scispace - formally typeset
Search or ask a question
Author

Julian Hofer

Bio: Julian Hofer is an academic researcher from Leibniz Association. The author has contributed to research in topics: Aerosol & Lidar. The author has an hindex of 9, co-authored 36 publications receiving 429 citations.
Topics: Aerosol, Lidar, Mineral dust, Asian Dust, Arctic

Papers
More filters
Journal ArticleDOI
TL;DR: PollyNET as mentioned in this paper consists of portable, remote-controlled multiwavelength-polarization-Raman lidars (Polly) for automated and continuous 24/7 observations of clouds and aerosols.
Abstract: . A global vertically resolved aerosol data set covering more than 10 years of observations at more than 20 measurement sites distributed from 63° N to 52° S and 72° W to 124° E has been achieved within the Raman and polarization lidar network PollyNET. This network consists of portable, remote-controlled multiwavelength-polarization-Raman lidars (Polly) for automated and continuous 24/7 observations of clouds and aerosols. PollyNET is an independent, voluntary, and scientific network. All Polly lidars feature a standardized instrument design with different capabilities ranging from single wavelength to multiwavelength systems, and now apply unified calibration, quality control, and data analysis. The observations are processed in near-real time without manual intervention, and are presented online at http://polly.tropos.de/ . The paper gives an overview of the observations on four continents and two research vessels obtained with eight Polly systems. The specific aerosol types at these locations (mineral dust, smoke, dust-smoke and other dusty mixtures, urban haze, and volcanic ash) are identified by their Angstrom exponent, lidar ratio, and depolarization ratio. The vertical aerosol distribution at the PollyNET locations is discussed on the basis of more than 55 000 automatically retrieved 30 min particle backscatter coefficient profiles at 532 nm as this operating wavelength is available for all Polly lidar systems. A seasonal analysis of measurements at selected sites revealed typical and extraordinary aerosol conditions as well as seasonal differences. These studies show the potential of PollyNET to support the establishment of a global aerosol climatology that covers the entire troposphere.

192 citations

Journal ArticleDOI
Matthew D. Shupe, Markus Rex, Byron Blomquist, P. Ola G. Persson, Julia Schmale, Taneil Uttal, Dietrich Althausen, Hélène Angot, Stephen D. Archer, Ludovic Bariteau, Ivo Beck, John Bilberry, Silvia Bucci, Clifton S. Buck, Matthew Boyer, Zoé Brasseur, Ian M. Brooks, Radiance Calmer, John J. Cassano, Vagner Castro, David Chu, D. Costa, Christopher J. Cox, Jessie M. Creamean, Susanne Crewell, Sandro Dahlke, Ellen Damm, Gijs de Boer, H. Deckelmann, Klaus Dethloff, Marina Dütsch, Kerstin Ebell, André Ehrlich, Jody Ellis, Ronny Engelmann, Allison A. Fong, Markus M. Frey, Michael Gallagher, Laurens Ganzeveld, Rolf Gradinger, Jürgen Graeser, Vernon Greenamyer, Hannes Griesche, Steele Griffiths, Jonathan D. Hamilton, Günther Heinemann, Detlev Helmig, Andreas Herber, Céline Heuzé, Julian Hofer, Todd Houchens, Dean Howard, Jun Inoue, Hans-Werner Jacobi, Ralf Jaiser, Tuija Jokinen, Olivier Jourdan, Gina Jozef, Wessley King, Amélie Kirchgaessner, Marcus Klingebiel, Misha Krassovski, Thomas Krumpen, Astrid Lampert, William M. Landing, Tiia Laurila, D. Lawrence, Michael Lonardi, Brice Loose, Christof Lüpkes, Maximilian Maahn, Andreas Macke, Wieslaw Maslowski, Chris M. Marsay, Marion Maturilli, Mario Mech, Sara M. Morris, Manuel Moser, Marcel Nicolaus, Paul Ortega, J. Osborn, Falk Pätzold, Donald K. Perovich, Tuukka Petäjä, Christian Pilz, Roberta Pirazzini, Kevin Posman, Heath Powers, Kerri A. Pratt, Andrea Preusser, Lauriane L. J. Quéléver, Martin Radenz, Benjamin Rabe, Annette Rinke, Torsten Sachs, A. Schulz, Holger Siebert, Tércio Pessoa Tabosa e Silva, Amy Solomon, Anja Sommerfeld, Gunnar Spreen, Mark P. Stephens, Andreas Stohl, Gunilla Svensson, Janek Uin, Juarez Viegas, Christiane Voigt, Peter von der Gathen, Birgit Wehner, Jeffrey M. Welker, Manfred Wendisch, Martin Werner, Zhouqing Xie, Fan Ming yue 
01 Jan 2022-Elementa
TL;DR: The MOSAiC program as mentioned in this paper was organized into four subgroups: atmospheric state, clouds and precipitation, gases and aerosols, and energy budgets, using a variety of approaches, and across multiple scales.
Abstract: With the Arctic rapidly changing, the needs to observe, understand, and model the changes are essential. To support these needs, an annual cycle of observations of atmospheric properties, processes, and interactions were made while drifting with the sea ice across the central Arctic during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition from October 2019 to September 2020. An international team designed and implemented the comprehensive program to document and characterize all aspects of the Arctic atmospheric system in unprecedented detail, using a variety of approaches, and across multiple scales. These measurements were coordinated with other observational teams to explore cross-cutting and coupled interactions with the Arctic Ocean, sea ice, and ecosystem through a variety of physical and biogeochemical processes. This overview outlines the breadth and complexity of the atmospheric research program, which was organized into 4 subgroups: atmospheric state, clouds and precipitation, gases and aerosols, and energy budgets. Atmospheric variability over the annual cycle revealed important influences from a persistent large-scale winter circulation pattern, leading to some storms with pressure and winds that were outside the interquartile range of past conditions suggested by long-term reanalysis. Similarly, the MOSAiC location was warmer and wetter in summer than the reanalysis climatology, in part due to its close proximity to the sea ice edge. The comprehensiveness of the observational program for characterizing and analyzing atmospheric phenomena is demonstrated via a winter case study examining air mass transitions and a summer case study examining vertical atmospheric evolution. Overall, the MOSAiC atmospheric program successfully met its objectives and was the most comprehensive atmospheric measurement program to date conducted over the Arctic sea ice. The obtained data will support a broad range of coupled-system scientific research and provide an important foundation for advancing multiscale modeling capabilities in the Arctic.

111 citations

Journal ArticleDOI
TL;DR: For the first time, continuous vertically resolved aerosol measurements were performed by lidar in Tajikistan, Central Asia, from March 2015 to August 2016 as mentioned in this paper, where a sun photometer was also operated co-located with the lidar.
Abstract: . For the first time, continuous vertically resolved aerosol measurements were performed by lidar in Tajikistan, Central Asia. Observations with the multiwavelength polarization Raman lidar PollyXT were conducted during CADEX (Central Asian Dust EXperiment) in Dushanbe, Tajikistan, from March 2015 to August 2016. Co-located with the lidar, a sun photometer was also operated. The goal of CADEX is to provide an unprecedented data set on vertically resolved aerosol optical properties in Central Asia, an area highly affected by climate change but largely missing vertically resolved aerosol measurements. During the 18-month measurement campaign, mineral dust was detected frequently from ground to the cirrus level height. In this study, an overview of the measurement period is given and four typical but different example measurement cases are discussed in detail. Three of them are dust cases and one is a contrasting pollution aerosol case. Vertical profiles of the measured optical properties and the calculated dust and non-dust mass concentrations are presented. Dust source regions were identified by means of backward trajectory analyses. A lofted layer of Middle Eastern dust with an aerosol optical thickness (AOT) of 0.4 and an extinction-related Angstrom exponent of 0.41 was measured. In comparison, two near-ground dust cases have Central Asian sources. One is an extreme dust event with an AOT of 1.5 and Angstrom exponent of 0.12 and the other one is a most extreme dust event with an AOT of above 4 (measured by sun photometer) and an Angstrom exponent of −0.08. The observed lidar ratios (and particle linear depolarization ratios) in the presented dust cases range from 40.3 to 46.9 sr (and 0.18–0.29) at 355 nm and from 35.7 to 42.9 sr (0.31–0.35) at 532 nm wavelength. The particle linear depolarization ratios indicate almost unpolluted dust in the case of a lofted dust layer and pure dust in the near-ground dust cases. The lidar ratio values are lower than typical lidar ratio values for Saharan dust (50–60 sr) and comparable to Middle Eastern or west-Asian dust lidar ratios (35–45 sr). In contrast, the presented case of pollution aerosol of local origin has an Angstrom exponent of 2.07 and a lidar ratio (particle linear depolarization ratio) of 55.8 sr (0.03) at 355 nm and 32.8 sr (0.08) at 532 nm wavelength.

97 citations

Journal ArticleDOI
TL;DR: In this article, the decay phase of an unprecedented, record-breaking stratospheric perturbation caused by wildfire smoke is reported and discussed in terms of geometrical, optical, and microphysical aerosol properties.
Abstract: . Six months of stratospheric aerosol observations with the European Aerosol Research Lidar Network (EARLINET) from August 2017 to January 2018 are presented. The decay phase of an unprecedented, record-breaking stratospheric perturbation caused by wildfire smoke is reported and discussed in terms of geometrical, optical, and microphysical aerosol properties. Enormous amounts of smoke were injected into the upper troposphere and lower stratosphere over fire areas in western Canada on 12 August 2017 during strong thunderstorm–pyrocumulonimbus activity. The stratospheric fire plumes spread over the entire Northern Hemisphere in the following weeks and months. Twenty-eight European lidar stations from northern Norway to southern Portugal and the eastern Mediterranean monitored the strong stratospheric perturbation on a continental scale. The main smoke layer (over central, western, southern, and eastern Europe) was found at heights between 15 and 20 km since September 2017 (about 2 weeks after entering the stratosphere). Thin layers of smoke were detected at heights of up to 22–23 km. The stratospheric aerosol optical thickness at 532 nm decreased from values > 0.25 on 21–23 August 2017 to 0.005–0.03 until 5–10 September and was mainly 0.003–0.004 from October to December 2017 and thus was still significantly above the stratospheric background (0.001–0.002). Stratospheric particle extinction coefficients (532 nm) were as high as 50–200 Mm −1 until the beginning of September and on the order of 1 Mm −1 (0.5–5 Mm −1 ) from October 2017 until the end of January 2018. The corresponding layer mean particle mass concentration was on the order of 0.05–0.5 µ g m −3 over these months. Soot particles (light-absorbing carbonaceous particles) are efficient ice-nucleating particles (INPs) at upper tropospheric (cirrus) temperatures and available to influence cirrus formation when entering the tropopause from above. We estimated INP concentrations of 50–500 L −1 until the first days in September and afterwards 5–50 L −1 until the end of the year 2017 in the lower stratosphere for typical cirrus formation temperatures of − 55 ∘ C and an ice supersaturation level of 1.15. The measured profiles of the particle linear depolarization ratio indicated a predominance of nonspherical smoke particles. The 532 nm depolarization ratio decreased slowly with time in the main smoke layer from values of 0.15–0.25 (August–September) to values of 0.05–0.10 (October–November) and 0.05 (December–January). The decrease of the depolarization ratio is consistent with aging of the smoke particles, growing of a coating around the solid black carbon core (aggregates), and thus change of the shape towards a spherical form. We found ascending aerosol layer features over the most southern European stations, especially over the eastern Mediterranean at 32–35 ∘ N, that ascended from heights of about 18–19 to 22–23 km from the beginning of October to the beginning of December 2017 (about 2 km per month). We discuss several transport and lifting mechanisms that may have had an impact on the found aerosol layering structures.

71 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present an extended set of dust conversion factors considering all relevant deserts around the globe and apply the new conversion factor set to a dust measurement with polarization lidar in Dushanbe, Tajikistan, in central Asia.
Abstract: . The POLIPHON (Polarization Lidar Photometer Networking) method permits the retrieval of particle number, surface area, and volume concentration for dust and non-dust aerosol components. The obtained microphysical properties are used to estimate height profiles of particle mass, cloud condensation nucleus (CCN) and ice-nucleating particle (INP) concentrations. The conversion of aerosol-type-dependent particle extinction coefficients, derived from polarization lidar observations, into the aerosol microphysical properties (number, surface area, volume) forms the central part of the POLIPHON computations. The conversion parameters are determined from Aerosol Robotic Network (AERONET) aerosol climatologies of optical and microphysical properties. In this article, we focus on the dust-related POLIPHON retrieval products and present an extended set of dust conversion factors considering all relevant deserts around the globe. We apply the new conversion factor set to a dust measurement with polarization lidar in Dushanbe, Tajikistan, in central Asia. Strong aerosol layering was observed with mineral dust advected from Kazakhstan (0–2 km height), Iran (2–5 km), the Arabian peninsula (5–7 km), and the Sahara (8–10 km). POLIPHON results obtained with different sets of conversion parameters were contrasted in this central Asian case study and permitted an estimation of the conversion uncertainties.

55 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present recent changes of the setup of the portable multiwavelength Raman and polarization lidar PollyXT and discuss the improved capabilities of the system by means of a case study.
Abstract: . The atmospheric science community demands autonomous and quality-assured vertically resolved measurements of aerosol and cloud properties. For this purpose, a portable lidar called Polly was developed at TROPOS in 2003. The lidar system was continuously improved with gained experience from the EARLINET community, involvement in worldwide field campaigns, and international institute collaborations within the last 10 years. Here we present recent changes of the setup of the portable multiwavelength Raman and polarization lidar PollyXT and discuss the improved capabilities of the system by means of a case study. The latest system developments include an additional near-range receiver unit for Raman measurements of the backscatter and extinction coefficient down to 120 m above ground, a water-vapor channel, and channels for simultaneous measurements of the particle linear depolarization ratio at 355 and 532 nm. Quality improvements were achieved by systematically following the EARLINET guidelines and the international PollyNET quality assurance developments. A modified ship radar ensures measurements in agreement with air-traffic safety regulations and allows for 24∕7 monitoring of the atmospheric state with PollyXT.

228 citations

Journal ArticleDOI
TL;DR: Air quality impacts from wildfires have been dramatic in recent years, with millions of people exposed to elevated and sometimes hazardous fine particulate matter (PM 2.5 ) concentrations for exten...
Abstract: Air quality impacts from wildfires have been dramatic in recent years, with millions of people exposed to elevated and sometimes hazardous fine particulate matter (PM 2.5 ) concentrations for exten...

145 citations

Journal ArticleDOI
TL;DR: In this paper, optical and microphysical properties of western Canadian wildfire smoke observed in a tropospheric layer from 5.5-6.5 km height and in a stratospheric layers from 15-16 km height during a record-breaking smoke event were presented.
Abstract: . We present spectrally resolved optical and microphysical properties of western Canadian wildfire smoke observed in a tropospheric layer from 5–6.5 km height and in a stratospheric layer from 15–16 km height during a record-breaking smoke event on 22 August 2017. Three polarization/Raman lidars were run at the European Aerosol Research Lidar Network (EARLINET) station of Leipzig, Germany, after sunset on 22 August. For the first time, the linear depolarization ratio and extinction-to-backscatter ratio (lidar ratio) of aged smoke particles were measured at all three important lidar wavelengths of 355, 532, and 1064 nm. Very different particle depolarization ratios were found in the troposphere and in the stratosphere. The obviously compact and spherical tropospheric smoke particles caused almost no depolarization of backscattered laser radiation at all three wavelengths ( %), whereas the dry irregularly shaped soot particles in the stratosphere lead to high depolarization ratios of 22 % at 355 nm and 18 % at 532 nm and a comparably low value of 4 % at 1064 nm. The lidar ratios were 40–45 sr (355 nm), 65–80 sr (532 nm), and 80–95 sr (1064 nm) in both the tropospheric and stratospheric smoke layers indicating similar scattering and absorption properties. The strong wavelength dependence of the stratospheric depolarization ratio was probably caused by the absence of a particle coarse mode (particle mode consisting of particles with radius >500 nm ). The stratospheric smoke particles formed a pronounced accumulation mode (in terms of particle volume or mass) centered at a particle radius of 350–400 nm. The effective particle radius was 0.32 µ m. The tropospheric smoke particles were much smaller (effective radius of 0.17 µ m). Mass concentrations were of the order of 5.5 µ g m −3 (tropospheric layer) and 40 µ g m −3 (stratospheric layer) in the night of 22 August 2017. The single scattering albedo of the stratospheric particles was estimated to be 0.74, 0.8, and 0.83 at 355, 532, and 1064 nm, respectively.

127 citations

Journal ArticleDOI
TL;DR: In this article, the authors used a new dust product developed using CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) observations and methods to provide a 3D multi-year analysis on the evolution of Saharan dust over North Africa and Europe.
Abstract: . In this study we use a new dust product developed using CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) observations and EARLINET (European Aerosol Research Lidar Network) measurements and methods to provide a 3-D multiyear analysis on the evolution of Saharan dust over North Africa and Europe. The product uses a CALIPSO L2 backscatter product corrected with a depolarization-based method to separate pure dust in external aerosol mixtures and a Saharan dust lidar ratio (LR) based on long-term EARLINET measurements to calculate the dust extinction profiles. The methodology is applied on a 9-year CALIPSO dataset (2007–2015) and the results are analyzed here to reveal for the first time the 3-D dust evolution and the seasonal patterns of dust over its transportation paths from the Sahara towards the Mediterranean and Continental Europe. During spring, the spatial distribution of dust shows a uniform pattern over the Sahara desert. The dust transport over the Mediterranean Sea results in mean dust optical depth (DOD) values up to 0.1. During summer, the dust activity is mostly shifted to the western part of the desert where mean DOD near the source is up to 0.6. Elevated dust plumes with mean extinction values between 10 and 75 Mm−1 are observed throughout the year at various heights between 2 and 6 km, extending up to latitudes of 40° N. Dust advection is identified even at latitudes of about 60° N, but this is due to rare events of episodic nature. Dust plumes of high DOD are also observed above the Balkans during the winter period and above northwest Europe during autumn at heights between 2 and 4 km, reaching mean extinction values up to 50 Mm−1. The dataset is considered unique with respect to its potential applications, including the evaluation of dust transport models and the estimation of cloud condensation nuclei (CCN) and ice nuclei (IN) concentration profiles. Finally, the product can be used to study dust dynamics during transportation, since it is capable of revealing even fine dynamical features such as the particle uplifting and deposition on European mountainous ridges such as the Alps and Carpathian Mountains.

120 citations