scispace - formally typeset
Search or ask a question
Author

Julian Lewis

Other affiliations: Lincoln's Inn, University of Oxford
Bio: Julian Lewis is an academic researcher from London Research Institute. The author has contributed to research in topics: Notch signaling pathway & Cellular differentiation. The author has an hindex of 52, co-authored 81 publications receiving 14382 citations. Previous affiliations of Julian Lewis include Lincoln's Inn & University of Oxford.


Papers
More filters
Journal ArticleDOI
29 Jun 1995-Nature
TL;DR: It is shown that C-Delta-1 is expressed in prospective neurons during neurogenesis, as new cells are being born and their fates decided, suggesting that both the Delta/ Notch signalling mechanism and its role in Neurogenesis have been conserved in vertebrates.
Abstract: The product of the Delta gene, acting as ligand, and that of the Notch gene, acting as receptor, are key components in a lateral-inhibition signalling pathway that regulates the detailed patterning of many different tissues in Drosophila. During neurogenesis in particular, neural precursors, by expressing Delta, inhibit neighbouring Notch-expressing cells from becoming committed to a neural fate. Vertebrates are known to have several Notch genes, but their functions are unclear and their ligands hitherto unidentified. Here we identify and describe a chick Delta homologue, C-Delta-1. We show that C-Delta-1 is expressed in prospective neurons during neurogenesis, as new cells are being born and their fates decided. Our data from the chick, combined with parallel evidence from Xenopus, suggest that both the Delta/Notch signalling mechanism and its role in neurogenesis have been conserved in vertebrates.

1,036 citations

Journal ArticleDOI
TL;DR: Cell transplantation studies suggest that mib function is essential in the signaling cell for efficient activation of Notch in neighboring cells, and observations support a model for Notch activation where the Delta-Notch interaction is followed by endocytosis of Delta and transendocyTosis of the Notch extracellular domain by the signalingcell.

785 citations

Journal ArticleDOI
TL;DR: A flurry of recent papers has clarified the key regulatory signals and brought us to the point where the authors can begin to give a coherent account, for at least one tissue, of how these signals collaborate to organize the architecture and behaviour of a stem-cell system.
Abstract: The lining of the intestine is renewed at an extraordinary rate, outpacing all other tissues in the vertebrate body. The renewal process is neatly organized in space, so that the whole production line, from the ever-youthful stem cells to their dying, terminally differentiated progeny, is laid out to view in histological sections. A flurry of recent papers has clarified the key regulatory signals and brought us to the point where we can begin to give a coherent account, for at least one tissue, of how these signals collaborate to organize the architecture and behaviour of a stem-cell system.

740 citations

Journal ArticleDOI
TL;DR: It is shown by mathematical simulation that direct autorepression of her1 and her7 by their own protein products provides a mechanism for the intracellular oscillator, and Such Notch-mediated synchronous oscillations are predicted even in the absence of direct her1/her7 autoregulation.

729 citations

Journal ArticleDOI
29 Jun 1995-Nature
TL;DR: Results indicate that the X-Delta-1 protein mediates lateral inhibition delivered by prospective neurons to adjacent cells, and that commitment to a neural fate in vertebrates is regulated by Delta-Notch signalling as in Drosophila.
Abstract: X-Delta-1, a Xenopus homologue of the Drosophila Delta gene, is expressed in the early embryonic nervous system in scattered cells that appear to be the prospective primary neurons. Ectopic X-Delta-1 activity inhibits production of primary neurons and interference with endogenous X-Delta-1 activity results in overproduction of primary neurons. These results indicate that the X-Delta-1 protein mediates lateral inhibition delivered by prospective neurons to adjacent cells, and that commitment to a neural fate in vertebrates is regulated by Delta-Notch signalling as in Drosophila.

700 citations


Cited by
More filters
Journal ArticleDOI
01 Nov 2001-Nature
TL;DR: Stem cell biology has come of age: Unequivocal proof that stem cells exist in the haematopoietic system has given way to the prospective isolation of several tissue-specific stem and progenitor cells, the initial delineation of their properties and expressed genetic programmes, and the beginnings of their utility in regenerative medicine.
Abstract: Stem cell biology has come of age. Unequivocal proof that stem cells exist in the haematopoietic system has given way to the prospective isolation of several tissue-specific stem and progenitor cells, the initial delineation of their properties and expressed genetic programmes, and the beginnings of their utility in regenerative medicine. Perhaps the most important and useful property of stem cells is that of self-renewal. Through this property, striking parallels can be found between stem cells and cancer cells: tumours may often originate from the transformation of normal stem cells, similar signalling pathways may regulate self-renewal in stem cells and cancer cells, and cancer cells may include 'cancer stem cells' - rare cells with indefinite potential for self-renewal that drive tumorigenesis.

8,999 citations

Journal ArticleDOI
TL;DR: The primary goals of the treatment of wounds are rapid wound closure and a functional and aesthetically satisfactory scar.
Abstract: The primary function of the skin is to serve as a protective barrier against the environment. Loss of the integrity of large portions of the skin as a result of injury or illness may lead to major disability or even death. Every year in the United States more than 1.25 million people have burns1 and 6.5 million have chronic skin ulcers caused by pressure, venous stasis, or diabetes mellitus.2 The primary goals of the treatment of wounds are rapid wound closure and a functional and aesthetically satisfactory scar. Recent advances in cellular and molecular biology have greatly expanded our understanding . . .

5,462 citations

Journal ArticleDOI
04 Apr 1997-Science
TL;DR: Details of how these signals control wound cell activities are beginning to emerge, and studies of healing in embryos have begun to show how the normal adult repair process might be readjusted to make it less like patching up and more like regeneration.
Abstract: The healing of an adult skin wound is a complex process requiring the collaborative efforts of many different tissues and cell lineages. The behavior of each of the contributing cell types during the phases of proliferation, migration, matrix synthesis, and contraction, as well as the growth factor and matrix signals present at a wound site, are now roughly understood. Details of how these signals control wound cell activities are beginning to emerge, and studies of healing in embryos have begun to show how the normal adult repair process might be readjusted to make it less like patching up and more like regeneration.

4,558 citations

Journal ArticleDOI
17 Apr 2009-Cell
TL;DR: This Review highlights recent studies in Notch signaling that reveal new molecular details about the regulation of ligand-mediated receptor activation, receptor proteolysis, and target selection.

3,120 citations

Journal ArticleDOI
TL;DR: Although the intracellular transduction of the Notch signal is remarkably simple, with no secondary messengers, this pathway functions in an enormous diversity of developmental processes and its dysfunction is implicated in many cancers.
Abstract: A small number of signalling pathways are used iteratively to regulate cell fates, cell proliferation and cell death in development. Notch is the receptor in one such pathway, and is unusual in that most of its ligands are also transmembrane proteins; therefore signalling is restricted to neighbouring cells. Although the intracellular transduction of the Notch signal is remarkably simple, with no secondary messengers, this pathway functions in an enormous diversity of developmental processes and its dysfunction is implicated in many cancers.

2,450 citations