scispace - formally typeset
Search or ask a question
Author

Julian M. Sturtevant

Other affiliations: National Institutes of Health
Bio: Julian M. Sturtevant is an academic researcher from Yale University. The author has contributed to research in topics: Denaturation (biochemistry) & Differential scanning calorimetry. The author has an hindex of 60, co-authored 210 publications receiving 12286 citations. Previous affiliations of Julian M. Sturtevant include National Institutes of Health.


Papers
More filters
Journal ArticleDOI
TL;DR: Comparison of the observed transition curves with theoretical curves calculated from the calorimetrically determined phase diagrams supports a literal interpretation of the phase diagrams.
Abstract: High sensitivity differential scanning calorimetry is applied to the study of the thermotropic behavior of mixtures of synthetic phospholipids in multilamellar aqueous suspensions. The systems dimyristoylphosphatidylcholine dipalmitoylphosphatidylcholine, and dimyristoylphosphatidylethanolamine-distearoylphosphatidylcholine, although definitely nonideal, exhibit essentially complete miscibility in both gel and liquid crystalline states, while the system dilauroylphosphatidylcholine-distearoylphosphatidylcholine is monotectic with lateral phase separation in the gel state. Comparison of the observed transition curves with theoretical curves calculated from the calorimetrically determined phase diagrams supports a literal interpretation of the phase diagrams.

859 citations

Journal ArticleDOI
TL;DR: Six possible sources of the large heat capacity and entropy changes frequently observed for processes involving proteins are identified and a method is proposed for estimating the magnitudes of the hydrophobic and vibrational contributions.
Abstract: Six possible sources of the large heat capacity and entropy changes frequently observed for processes involving proteins are identified. Of these the conformational, hydrophobic, and vibrational effects seem likely to be of greatest importance. A method is proposed for estimating the magnitudes of the hydrophobic and vibrational contributions. Application of this method to several protein processes appears to achieve significant clarification of previously confusing and apparently contradictory data.

799 citations

Journal ArticleDOI
TL;DR: The apparent heat capacities of the lipids in the liquid crystal state are, with the possible exception of dipalmitoyl lecithin, no more than 5 cal deg-1 (mole of lipid)-1 larger than in the gel state, indicating that the hydrocarbon chains have much less mobility in theLiquid crystalline statethan in the corresponding liquid normal paraffins.

453 citations

Journal ArticleDOI
TL;DR: A highly sensitive and stable scanning microcalorimeter is employed in a reinvestigation of the effect of cholesterol on multilamellar suspensions of dimyristoylphosphatidylcholine and DPPC, suggesting the coexistence of two immiscible solid phases.
Abstract: A highly sensitive and stable scanning microcalorimeter is employed in a reinvestigation of the effect of cholesterol on multilamellar suspensions of dimyristoylphosphatidylcholine (DMPC) and dipalmitoylphosphatidylcholine (DPPC). Below 20 mol % cholesterol the DPPC mixtures give heat-capacity curves each of which can be resolved into a narrow and a broad peak, suggesting the coexistence of two immiscible solid phases; above 20 mol % only the broad peak is observed and this disappears at about 50 mol %. The DMPC mixtures show a more complicated behavior; from about 13.5 to 20 mol % cholesterol the observed curves appear to be the sum of three component peaks. As with the DPPC mixtures, only a single broad peak is observed above 20 mol % cholesterol, and this broad peak becomes undetectable above about 50 mol %. These results are discussed.

379 citations

Journal ArticleDOI
TL;DR: The usual assumption in studies of the temperature variation of equilibrium constants for equilibria of the form A+B <-->AB that a plot of ln K vs. 1/T is a straight line with slope equal to -delta HvH/R is not valid in many cases.
Abstract: In this paper we show that the usual assumption in studies of the temperature variation of equilibrium constants for equilibria of the form A+B AB that a plot of ln K vs. 1/T (K = equilibrium constant, T = temperature in degrees kelvin) is a straight line with slope equal to -delta HvH/R (delta HvH = van't Hoff or apparent enthalpy, R = gas constant) is not valid in many cases. In all the cases considered here, delta HvH is temperature dependent and is significantly different from the true or calorimetrically measured enthalpy, and the respective values for delta Cp are also significantly different.

303 citations


Cited by
More filters
Journal ArticleDOI
18 Feb 1972-Science
TL;DR: Results strongly indicate that the bivalent antibodies produce an aggregation of the surface immunoglobulin molecules in the plane of the membrane, which can occur only if the immunoglOBulin molecules are free to diffuse in the membrane.
Abstract: A fluid mosaic model is presented for the gross organization and structure of the proteins and lipids of biological membranes. The model is consistent with the restrictions imposed by thermodynamics. In this model, the proteins that are integral to the membrane are a heterogeneous set of globular molecules, each arranged in an amphipathic structure, that is, with the ionic and highly polar groups protruding from the membrane into the aqueous phase, and the nonpolar groups largely buried in the hydrophobic interior of the membrane. These globular molecules are partially embedded in a matrix of phospholipid. The bulk of the phospholipid is organized as a discontinuous, fluid bilayer, although a small fraction of the lipid may interact specifically with the membrane proteins. The fluid mosaic structure is therefore formally analogous to a two-dimensional oriented solution of integral proteins (or lipoproteins) in the viscous phospholipid bilayer solvent. Recent experiments with a wide variety of techniqes and several different membrane systems are described, all of which abet consistent with, and add much detail to, the fluid mosaic model. It therefore seems appropriate to suggest possible mechanisms for various membrane functions and membrane-mediated phenomena in the light of the model. As examples, experimentally testable mechanisms are suggested for cell surface changes in malignant transformation, and for cooperative effects exhibited in the interactions of membranes with some specific ligands. Note added in proof: Since this article was written, we have obtained electron microscopic evidence (69) that the concanavalin A binding sites on the membranes of SV40 virus-transformed mouse fibroblasts (3T3 cells) are more clustered than the sites on the membranes of normal cells, as predicted by the hypothesis represented in Fig. 7B. T-here has also appeared a study by Taylor et al. (70) showing the remarkable effects produced on lymphocytes by the addition of antibodies directed to their surface immunoglobulin molecules. The antibodies induce a redistribution and pinocytosis of these surface immunoglobulins, so that within about 30 minutes at 37 degrees C the surface immunoglobulins are completely swept out of the membrane. These effects do not occur, however, if the bivalent antibodies are replaced by their univalent Fab fragments or if the antibody experiments are carried out at 0 degrees C instead of 37 degrees C. These and related results strongly indicate that the bivalent antibodies produce an aggregation of the surface immunoglobulin molecules in the plane of the membrane, which can occur only if the immunoglobulin molecules are free to diffuse in the membrane. This aggregation then appears to trigger off the pinocytosis of the membrane components by some unknown mechanism. Such membrane transformations may be of crucial importance in the induction of an antibody response to an antigen, as well as iv other processes of cell differentiation.

7,790 citations

Journal ArticleDOI
TL;DR: On the basis of the thermochemical behavior of small molecule interactions, it is concluded that the strengthening of hydrogen bonds in the past decade, a complete thermodynamic description of the self-association of many proteins and their interactions is concluded.
Abstract: Reviewing the thermodynamic parameters characterizing self-association and ligand binding of proteins at 25 OC, we find AGO, AHo, AS\", and ACpo are often all of negative sign. It is thus not possible to account for the stability of association complexes of proteins on the basis of hydrophobic interactions alone. We present a conceptual model of protein association consisting of two steps: the mutual penetration of hydration layers causing disordering of the solvent followed by further short-range interactions. The net AGO for the complete association process is primarily determined by the positive entropy change accompanying the first step and the negative enthalpy change of the second step. On the basis of the thermochemical behavior of small molecule interactions, we conclude that the strengthening of hydrogen bonds in the I n the past decade, a complete thermodynamic description of the self-association of many proteins and their interactions From the Laboratory of Molecular Biology (P.D.R.) and Laboratory of Nutrition and Endocrinology (S.S.), National Institute of Arthritis, Metabolism and Digestive Diseases, National Institutes of Health, Bethesda, Maryland 20205. Received September 23, 1980. low dielectric macromolecular interior and van der Waals' interactions introduced as a consequence of the hydrophobic effect are the most important factors contributing to the observed negative values of AHo and ASo and hence to the stability of protein association complexes. The X-ray crystallographic structures of these complexes are consonant with this analysis. The tendency for protein association reactions to become entropy dominated and/or entropy-enthalpy assisted at low temperatures and enthalpy dominated at high temperatures (a consequence of the typically negative values of AC,\") arises from the diminution of the hydrophobic effect with increasing temperature which is a general property of the solvent, water. with small molecular substrates has become available. Concomitantly, X-ray crystallography has provided a detailed picture of some of these associations, and this has stimulated a number of theoretical studies (Levitt & Warshel, 1975; Gelin & Karplus, 1975; Chothia & Janin, 1975), based upon energetic considerations, to account for these structures. The This article not subject to U S . Copyright. Published 1981 by the American Chemical Society T H E R M O D Y N A M I C S O F P R O T E I N A S S O C I A T I O N V O L . 2 0 , N O . 1 1 , 1 9 8 1 3097 Table I: Thermodynamics of Protein Association' association process A G \" ~ AiY A s o , A c p o (kcal mol-') (kcal mol-l) (cal K-I mol-') (cal K-I mol-I) refb trypsin (bovine) + inhibitor (soybean) -14.6 8.6 78 -440 c, d deoxyhemoglobin S gelation -3.4 2.0 18 -200 e, f lysozyme self-association (indefinite) -3.9 -6 .4 -8.3 g glucagon trimerization -12.1 -3 1 -64 -430 h, i hemoglobin t haptoglobin -11.5 -3 3 -7 3 -940 i a-chymotrypsin dimerization -7.1 -35 -9 5 k, I S-peptide + S-protein (ribonuclease) -13 -40 -90 -1100 m, n All thermodynamic parameters expressed per mole of complex formed except the indefinite association cases of hemoglobin S and lysozyme for which the mole refers to the monomeric protein reacted. Unitary entropy and free energy are given for processes of defined stoichiometry. Standard states are hypothetical 1 M protein, pH at which the reaction was measured. All pHs were close to 7 except for trypsin, pH 5, haptoglobin, pH 5.5, and glucagon, pH 10.5. All data for 25 \"C except glucagon, T = 30 \"C. ence is to calorimetric work and the second is to X-ray crystallographic structure determination. al. (1974). e Rosset al. (1977). Wishner e t al. (1975). g Banerjee et al. (1975). Johnson et al. (1979). * Sasaki et al. (1975). For each entry, the first referSweet et Baugh & Trowbridge (1972). Lavialle et al. (1974). Shiao & Sturtevant (1969). lVandlen &Tulinsky (1973). Hearn et al. (1971). Wyckoff e t al. (1970). methodology and problems involved in such calculations have been critically reviewed by NBmethy & Scheraga (1977). In this paper we review the thermodynamics of protein association processes for the examples best characterized in terms of their chemistry and structure. From this survey we find that the thermodynamic parameters AGO, Ai?, AS\", and ACpo are predominantly of negative sign. This result poses severe difficulties for interpretations of protein association based upon the entropically driven hydrophobic effect. The aim of this paper is to attempt to account for the signs and magnitudes of these thermodynamic parameters for protein association reactions in terms of known molecular forces and the thermochemistry of small molecule interactions.

4,576 citations

Book ChapterDOI
TL;DR: The chapter reviews that the denaturation is a process in which the spatial arrangement of the polypeptide chains within the molecule is changed from that typical of the native protein to a more disordered arrangement.
Abstract: Publisher Summary This chapter explores that the changes that take place in the protein molecules during denaturation constitute one of the most interesting and complex classes of reactions that can be found either in nature or in the laboratory These reactions are important because of the information they can provide about the more intimate details of protein structure and function They are also significant because they challenge the chemist with a difficult area for the application of chemical principles The chapter reviews that the denaturation is a process in which the spatial arrangement of the polypeptide chains within the molecule is changed from that typical of the native protein to a more disordered arrangement The chapter also discusses the classification of protein structures: primary, secondary, and tertiary structures The primary structure is that expressed by the structural chemical formula and depends entirely on the chemical valence bonds that the classical organic chemist would write down for the protein molecule The secondary structure is the configuration of the polypeptide chain that results from the satisfaction of the hydrogen bonding potential between the peptide N-H and C=O groups The tertiary structure is the pattern according to which the secondary structures are packed together within the native protein molecule The term “denaturation” as used in this chapter is indented to include changes in both the secondary and tertiary structures

4,528 citations

Journal ArticleDOI
C. N. Pace1, Felix Vajdos1, L. R. Fee1, Gerald R. Grimsley1, T Gray1 
TL;DR: The studies reported here suggest that the Edelhoch method is the best method for measuring ε for a protein, which can best be predicted with this equation.
Abstract: The molar absorption coefficient, E, of a protein is usually based on concentrations measured by dry weight, nitrogen, or amino acid analysis. The studies reported here suggest that the Edelhoch method is the best method for measuring E for a protein. (This method is described by Gill and von Hippel [1989, Anal Biochem 182:3193261 and is based on data from Edelhoch [1967, Biochemistry 6:1948-19541.) The absorbance of a protein at 280 nm depends on the content of Trp, Tyr, and cystine (disulfide bonds). The average E values for these chromophores in a sample of 18 well-characterized proteins have been estimated, and the E values in water, propanol, 6 M guanidine hydrochloride (GdnHCI), and 8 M urea have been measured. For Trp, the average E values for the proteins are less than the E values measured in any of the solvents. For Tyr, the average E values for the proteins are intermediate between those measured in 6 M GdnHCl and those measured in propanol. Based on a sample of 116 measured t values for 80 proteins, the t at 280 nm of a folded protein in water, t(280), can best be predicted with this equation:

3,718 citations

Journal ArticleDOI
TL;DR: The present review aims to provide a reassessment of the factors important for folding in light of current knowledge, including contributions to the free energy of folding arising from electrostatics, hydrogen-bonding and van der Waals interactions, intrinsic propensities, and hydrophobic interactions.
Abstract: T e purpose of this review is to assess the nature and magnitudes of the dominant forces in protein folding. Since proteins are only marginally stable at room temperature,’ no type of molecular interaction is unimportant, and even small interactions can contribute significantly (positively or negatively) to stability (Alber, 1989a,b; Matthews, 1987a,b). However, the present review aims to identify only the largest forces that lead to the structural features of globular proteins: their extraordinary compactness, their core of nonpolar residues, and their considerable amounts of internal architecture. This review explores contributions to the free energy of folding arising from electrostatics (classical charge repulsions and ion pairing), hydrogen-bonding and van der Waals interactions, intrinsic propensities, and hydrophobic interactions. An earlier review by Kauzmann (1959) introduced the importance of hydrophobic interactions. His insights were particularly remarkable considering that he did not have the benefit of known protein structures, model studies, high-resolution calorimetry, mutational methods, or force-field or statistical mechanical results. The present review aims to provide a reassessment of the factors important for folding in light of current knowledge. Also considered here are the opposing forces, conformational entropy and electrostatics. The process of protein folding has been known for about 60 years. In 1902, Emil Fischer and Franz Hofmeister independently concluded that proteins were chains of covalently linked amino acids (Haschemeyer & Haschemeyer, 1973) but deeper understanding of protein structure and conformational change was hindered because of the difficulty in finding conditions for solubilization. Chick and Martin (191 1) were the first to discover the process of denaturation and to distinguish it from the process of aggregation. By 1925, the denaturation process was considered to be either hydrolysis of the peptide bond (Wu & Wu, 1925; Anson & Mirsky, 1925) or dehydration of the protein (Robertson, 1918). The view that protein denaturation was an unfolding process was

3,570 citations