scispace - formally typeset
Search or ask a question
Author

Julian Malicki

Bio: Julian Malicki is an academic researcher from Poznan University of Medical Sciences. The author has contributed to research in topics: Medicine & Imaging phantom. The author has an hindex of 17, co-authored 103 publications receiving 9413 citations.


Papers
More filters
Journal ArticleDOI
04 Oct 2012-Nature
TL;DR: The ability to integrate information across platforms provided key insights into previously defined gene expression subtypes and demonstrated the existence of four main breast cancer classes when combining data from five platforms, each of which shows significant molecular heterogeneity.
Abstract: We analysed primary breast cancers by genomic DNA copy number arrays, DNA methylation, exome sequencing, messenger RNA arrays, microRNA sequencing and reverse-phase protein arrays. Our ability to integrate information across platforms provided key insights into previously defined gene expression subtypes and demonstrated the existence of four main breast cancer classes when combining data from five platforms, each of which shows significant molecular heterogeneity. Somatic mutations in only three genes (TP53, PIK3CA and GATA3) occurred at >10% incidence across all breast cancers; however, there were numerous subtype-associated and novel gene mutations including the enrichment of specific mutations in GATA3, PIK3CA and MAP3K1 with the luminal A subtype. We identified two novel protein-expression-defined subgroups, possibly produced by stromal/microenvironmental elements, and integrated analyses identified specific signalling pathways dominant in each molecular subtype including a HER2/phosphorylated HER2/EGFR/phosphorylated EGFR signature within the HER2-enriched expression subtype. Comparison of basal-like breast tumours with high-grade serous ovarian tumours showed many molecular commonalities, indicating a related aetiology and similar therapeutic opportunities. The biological finding of the four main breast cancer subtypes caused by different subsets of genetic and epigenetic abnormalities raises the hypothesis that much of the clinically observable plasticity and heterogeneity occurs within, and not across, these major biological subtypes of breast cancer.

9,355 citations

Journal ArticleDOI
TL;DR: The European average number of MV machines per million inhabitants and per department is now better in line with QUARTS recommendations from 2005, but the survey also showed a significant heterogeneity in the access to modern radiotherapy equipment in Europe.

150 citations

Journal ArticleDOI
TL;DR: Given the younger age and potential long-term adverse sequelae of traditional HNSCC treatments, young adults should be treated on a case-by-case basis and post-therapy quality of life must be considered in any treatment-decision making process.
Abstract: Background Head and neck squamous cell carcinoma (HNSCC) is a disease of middle-aged to elderly adults. However, an increased incidence of HNSCC in young people under 45 years of age has been reported recently. In the present review, we focused on the epidemiology and aetiology of HNSCC in adults under 45 years of age.

137 citations

Journal ArticleDOI
TL;DR: The actual utilization of radiotherapy is significantly lower than the optimal use predicted from the evidence based estimates in the literature and poses a major challenge for policy makers when planning the resources at the national level to improve the provision in European countries.

132 citations

Journal ArticleDOI
TL;DR: Intense-modulated radiation therapy (IMRT) gives us the ability to deliver highly conformal nonconvex dose distributions to the target with astonishing precision, though not without certain risks.

117 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A practical guide to the analysis and visualization features of the cBioPortal for Cancer Genomics, which makes complex cancer genomics profiles accessible to researchers and clinicians without requiring bioinformatics expertise, thus facilitating biological discoveries.
Abstract: The cBioPortal for Cancer Genomics (http://cbioportal.org) provides a Web resource for exploring, visualizing, and analyzing multidimensional cancer genomics data. The portal reduces molecular profiling data from cancer tissues and cell lines into readily understandable genetic, epigenetic, gene expression, and proteomic events. The query interface combined with customized data storage enables researchers to interactively explore genetic alterations across samples, genes, and pathways and, when available in the underlying data, to link these to clinical outcomes. The portal provides graphical summaries of gene-level data from multiple platforms, network visualization and analysis, survival analysis, patient-centric queries, and software programmatic access. The intuitive Web interface of the portal makes complex cancer genomics profiles accessible to researchers and clinicians without requiring bioinformatics expertise, thus facilitating biological discoveries. Here, we provide a practical guide to the analysis and visualization features of the cBioPortal for Cancer Genomics.

10,947 citations

Journal ArticleDOI
29 Mar 2013-Science
TL;DR: This work has revealed the genomic landscapes of common forms of human cancer, which consists of a small number of “mountains” (genes altered in a high percentage of tumors) and a much larger number of "hills" (Genes altered infrequently).
Abstract: Over the past decade, comprehensive sequencing efforts have revealed the genomic landscapes of common forms of human cancer. For most cancer types, this landscape consists of a small number of “mountains” (genes altered in a high percentage of tumors) and a much larger number of “hills” (genes altered infrequently). To date, these studies have revealed ~140 genes that, when altered by intragenic mutations, can promote or “drive” tumorigenesis. A typical tumor contains two to eight of these “driver gene” mutations; the remaining mutations are passengers that confer no selective growth advantage. Driver genes can be classified into 12 signaling pathways that regulate three core cellular processes: cell fate, cell survival, and genome maintenance. A better understanding of these pathways is one of the most pressing needs in basic cancer research. Even now, however, our knowledge of cancer genomes is sufficient to guide the development of more effective approaches for reducing cancer morbidity and mortality.

6,441 citations

Journal ArticleDOI
TL;DR: This review summarizes the clinical efficacy, perspectives, and future challenges of using PD-1/PD-L1-directed antibodies in the treatment of breast cancer.
Abstract: Immune checkpoint inhibition represents a major recent breakthrough in the treatment of malignant diseases including breast cancer. Blocking the programmed death receptor-1 (PD-1) and its ligand, PD-L1, has shown impressive antitumor activity and may lead to durable long-term disease control, especially in the triple-negative subtypes of breast cancer (TNBC). Although immune checkpoint blockade is generally well tolerated, specific immune-related adverse events (irAEs) may occur. This review summarizes the clinical efficacy, perspectives, and future challenges of using PD-1/PD-L1-directed antibodies in the treatment of breast cancer.

5,777 citations

Journal ArticleDOI
TL;DR: The Pan-Cancer initiative compares the first 12 tumor types profiled by TCGA with a major opportunity to develop an integrated picture of commonalities, differences and emergent themes across tumor lineages.
Abstract: The Cancer Genome Atlas (TCGA) Research Network has profiled and analyzed large numbers of human tumors to discover molecular aberrations at the DNA, RNA, protein and epigenetic levels. The resulting rich data provide a major opportunity to develop an integrated picture of commonalities, differences and emergent themes across tumor lineages. The Pan-Cancer initiative compares the first 12 tumor types profiled by TCGA. Analysis of the molecular aberrations and their functional roles across tumor types will teach us how to extend therapies effective in one cancer type to others with a similar genomic profile.

5,294 citations