scispace - formally typeset
Search or ask a question
Author

Julian P T Higgins

Bio: Julian P T Higgins is an academic researcher from University of Bristol. The author has contributed to research in topics: Systematic review & Meta-analysis. The author has an hindex of 126, co-authored 334 publications receiving 217988 citations. Previous affiliations of Julian P T Higgins include Media Research Center & University of Reading.


Papers
More filters
Journal ArticleDOI

[...]

04 Sep 2003-BMJ
TL;DR: A new quantity is developed, I 2, which the authors believe gives a better measure of the consistency between trials in a meta-analysis, which is susceptible to the number of trials included in the meta- analysis.
Abstract: Cochrane Reviews have recently started including the quantity I 2 to help readers assess the consistency of the results of studies in meta-analyses. What does this new quantity mean, and why is assessment of heterogeneity so important to clinical practice? Systematic reviews and meta-analyses can provide convincing and reliable evidence relevant to many aspects of medicine and health care.1 Their value is especially clear when the results of the studies they include show clinically important effects of similar magnitude. However, the conclusions are less clear when the included studies have differing results. In an attempt to establish whether studies are consistent, reports of meta-analyses commonly present a statistical test of heterogeneity. The test seeks to determine whether there are genuine differences underlying the results of the studies (heterogeneity), or whether the variation in findings is compatible with chance alone (homogeneity). However, the test is susceptible to the number of trials included in the meta-analysis. We have developed a new quantity, I 2, which we believe gives a better measure of the consistency between trials in a meta-analysis. Assessment of the consistency of effects across studies is an essential part of meta-analysis. Unless we know how consistent the results of studies are, we cannot determine the generalisability of the findings of the meta-analysis. Indeed, several hierarchical systems for grading evidence state that the results of studies must be consistent or homogeneous to obtain the highest grading.2–4 Tests for heterogeneity are commonly used to decide on methods for combining studies and for concluding consistency or inconsistency of findings.5 6 But what does the test achieve in practice, and how should the resulting P values be interpreted? A test for heterogeneity examines the null hypothesis that all studies are evaluating the same effect. The usual test statistic …

37,135 citations

Journal ArticleDOI

[...]

TL;DR: It is concluded that H and I2, which can usually be calculated for published meta-analyses, are particularly useful summaries of the impact of heterogeneity, and one or both should be presented in publishedMeta-an analyses in preference to the test for heterogeneity.
Abstract: The extent of heterogeneity in a meta-analysis partly determines the difficulty in drawing overall conclusions. This extent may be measured by estimating a between-study variance, but interpretation is then specific to a particular treatment effect metric. A test for the existence of heterogeneity exists, but depends on the number of studies in the meta-analysis. We develop measures of the impact of heterogeneity on a meta-analysis, from mathematical criteria, that are independent of the number of studies and the treatment effect metric. We derive and propose three suitable statistics: H is the square root of the chi2 heterogeneity statistic divided by its degrees of freedom; R is the ratio of the standard error of the underlying mean from a random effects meta-analysis to the standard error of a fixed effect meta-analytic estimate, and I2 is a transformation of (H) that describes the proportion of total variation in study estimates that is due to heterogeneity. We discuss interpretation, interval estimates and other properties of these measures and examine them in five example data sets showing different amounts of heterogeneity. We conclude that H and I2, which can usually be calculated for published meta-analyses, are particularly useful summaries of the impact of heterogeneity. One or both should be presented in published meta-analyses in preference to the test for heterogeneity.

21,054 citations

Book

[...]

23 Sep 2019
TL;DR: The Cochrane Handbook for Systematic Reviews of Interventions is the official document that describes in detail the process of preparing and maintaining Cochrane systematic reviews on the effects of healthcare interventions.
Abstract: The Cochrane Handbook for Systematic Reviews of Interventions is the official document that describes in detail the process of preparing and maintaining Cochrane systematic reviews on the effects of healthcare interventions.

16,917 citations

Journal ArticleDOI

[...]

18 Oct 2011-BMJ
TL;DR: The Cochrane Collaboration’s tool for assessing risk of bias aims to make the process clearer and more accurate.
Abstract: Flaws in the design, conduct, analysis, and reporting of randomised trials can cause the effect of an intervention to be underestimated or overestimated. The Cochrane Collaboration’s tool for assessing risk of bias aims to make the process clearer and more accurate

16,113 citations


Cited by
More filters
Journal ArticleDOI

[...]

04 Sep 2003-BMJ
TL;DR: A new quantity is developed, I 2, which the authors believe gives a better measure of the consistency between trials in a meta-analysis, which is susceptible to the number of trials included in the meta- analysis.
Abstract: Cochrane Reviews have recently started including the quantity I 2 to help readers assess the consistency of the results of studies in meta-analyses. What does this new quantity mean, and why is assessment of heterogeneity so important to clinical practice? Systematic reviews and meta-analyses can provide convincing and reliable evidence relevant to many aspects of medicine and health care.1 Their value is especially clear when the results of the studies they include show clinically important effects of similar magnitude. However, the conclusions are less clear when the included studies have differing results. In an attempt to establish whether studies are consistent, reports of meta-analyses commonly present a statistical test of heterogeneity. The test seeks to determine whether there are genuine differences underlying the results of the studies (heterogeneity), or whether the variation in findings is compatible with chance alone (homogeneity). However, the test is susceptible to the number of trials included in the meta-analysis. We have developed a new quantity, I 2, which we believe gives a better measure of the consistency between trials in a meta-analysis. Assessment of the consistency of effects across studies is an essential part of meta-analysis. Unless we know how consistent the results of studies are, we cannot determine the generalisability of the findings of the meta-analysis. Indeed, several hierarchical systems for grading evidence state that the results of studies must be consistent or homogeneous to obtain the highest grading.2–4 Tests for heterogeneity are commonly used to decide on methods for combining studies and for concluding consistency or inconsistency of findings.5 6 But what does the test achieve in practice, and how should the resulting P values be interpreted? A test for heterogeneity examines the null hypothesis that all studies are evaluating the same effect. The usual test statistic …

37,135 citations

Journal ArticleDOI

[...]

TL;DR: An Explanation and Elaboration of the PRISMA Statement is presented and updated guidelines for the reporting of systematic reviews and meta-analyses are presented.
Abstract: Systematic reviews and meta-analyses are essential to summarize evidence relating to efficacy and safety of health care interventions accurately and reliably. The clarity and transparency of these reports, however, is not optimal. Poor reporting of systematic reviews diminishes their value to clinicians, policy makers, and other users. Since the development of the QUOROM (QUality Of Reporting Of Meta-analysis) Statement—a reporting guideline published in 1999—there have been several conceptual, methodological, and practical advances regarding the conduct and reporting of systematic reviews and meta-analyses. Also, reviews of published systematic reviews have found that key information about these studies is often poorly reported. Realizing these issues, an international group that included experienced authors and methodologists developed PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) as an evolution of the original QUOROM guideline for systematic reviews and meta-analyses of evaluations of health care interventions. The PRISMA Statement consists of a 27-item checklist and a four-phase flow diagram. The checklist includes items deemed essential for transparent reporting of a systematic review. In this Explanation and Elaboration document, we explain the meaning and rationale for each checklist item. For each item, we include an example of good reporting and, where possible, references to relevant empirical studies and methodological literature. The PRISMA Statement, this document, and the associated Web site (http://www.prisma-statement.org/) should be helpful resources to improve reporting of systematic reviews and meta-analyses.

22,678 citations

Book

[...]

23 Sep 2019
TL;DR: The Cochrane Handbook for Systematic Reviews of Interventions is the official document that describes in detail the process of preparing and maintaining Cochrane systematic reviews on the effects of healthcare interventions.
Abstract: The Cochrane Handbook for Systematic Reviews of Interventions is the official document that describes in detail the process of preparing and maintaining Cochrane systematic reviews on the effects of healthcare interventions.

16,917 citations

Journal ArticleDOI

[...]

TL;DR: It is recommended that spirometry is required for the clinical diagnosis of COPD to avoid misdiagnosis and to ensure proper evaluation of severity of airflow limitation.
Abstract: Chronic obstructive pulmonary disease (COPD) remains a major public health problem. It is the fourth leading cause of chronic morbidity and mortality in the United States, and is projected to rank fifth in 2020 in burden of disease worldwide, according to a study published by the World Bank/World Health Organization. Yet, COPD remains relatively unknown or ignored by the public as well as public health and government officials. In 1998, in an effort to bring more attention to COPD, its management, and its prevention, a committed group of scientists encouraged the U.S. National Heart, Lung, and Blood Institute and the World Health Organization to form the Global Initiative for Chronic Obstructive Lung Disease (GOLD). Among the important objectives of GOLD are to increase awareness of COPD and to help the millions of people who suffer from this disease and die prematurely of it or its complications. The first step in the GOLD program was to prepare a consensus report, Global Strategy for the Diagnosis, Management, and Prevention of COPD, published in 2001. The present, newly revised document follows the same format as the original consensus report, but has been updated to reflect the many publications on COPD that have appeared. GOLD national leaders, a network of international experts, have initiated investigations of the causes and prevalence of COPD in their countries, and developed innovative approaches for the dissemination and implementation of COPD management guidelines. We appreciate the enormous amount of work the GOLD national leaders have done on behalf of their patients with COPD. Despite the achievements in the 5 years since the GOLD report was originally published, considerable additional work is ahead of us if we are to control this major public health problem. The GOLD initiative will continue to bring COPD to the attention of governments, public health officials, health care workers, and the general public, but a concerted effort by all involved in health care will be necessary.

16,210 citations

Journal ArticleDOI

[...]

18 Oct 2011-BMJ
TL;DR: The Cochrane Collaboration’s tool for assessing risk of bias aims to make the process clearer and more accurate.
Abstract: Flaws in the design, conduct, analysis, and reporting of randomised trials can cause the effect of an intervention to be underestimated or overestimated. The Cochrane Collaboration’s tool for assessing risk of bias aims to make the process clearer and more accurate

16,113 citations