scispace - formally typeset
Search or ask a question
Author

Julian Togelius

Bio: Julian Togelius is an academic researcher from New York University. The author has contributed to research in topics: Game design & Game mechanics. The author has an hindex of 58, co-authored 420 publications receiving 13135 citations. Previous affiliations of Julian Togelius include Dalle Molle Institute for Artificial Intelligence Research & Harvard University.


Papers
More filters
Journal ArticleDOI
TL;DR: This article contains a survey of all published papers known to the authors in which game content is generated through search or optimisation, and ends with an overview of important open research problems.
Abstract: The focus of this survey is on research in applying evolutionary and other metaheuristic search algorithms to automatically generating content for games, both digital and nondigital (such as board games). The term search-based procedural content generation is proposed as the name for this emerging field, which at present is growing quickly. A taxonomy for procedural content generation is devised, centering on what kind of content is generated, how the content is represented and how the quality/fitness of the content is evaluated; search-based procedural content generation in particular is situated within this taxonomy. This article also contains a survey of all published papers known to the authors in which game content is generated through search or optimisation, and ends with an overview of important open research problems.

637 citations

Journal ArticleDOI
TL;DR: The paper provides a taxonomy of PCG algorithms and introduces a framework for PCG driven by computational models of user experience, which is generic and applicable to various subareas of HCI.
Abstract: Procedural content generation (PCG) is an increasingly important area of technology within modern human-computer interaction (HCI) design. Personalization of user experience via affective and cognitive modeling, coupled with real-time adjustment of the content according to user needs and preferences are important steps toward effective and meaningful PCG. Games, Web 2.0, interface, and software design are among the most popular applications of automated content generation. The paper provides a taxonomy of PCG algorithms and introduces a framework for PCG driven by computational models of user experience. This approach, which we call Experience-Driven Procedural Content Generation (EDPCG), is generic and applicable to various subareas of HCI. We employ games as an example indicative of rich HCI and complex affect elicitation, and demonstrate the approach's effectiveness via dissimilar successful studies.

397 citations

Book
18 Oct 2016
TL;DR: This book presents the most up-to-date coverage of procedural content generation (PCG) for games, specifically the procedural generation of levels, landscapes, items, rules, quests, or other types of content.
Abstract: This book presents the most up-to-date coverage of procedural content generation (PCG) for games, specifically the procedural generation of levels, landscapes, items, rules, quests, or other types of content. Each chapter explains an algorithm type or domain, including fractal methods, grammar-based methods, search-based and evolutionary methods, constraint-based methods, and narrative, terrain, and dungeon generation. The authors are active academic researchers and game developers, and the book is appropriate for undergraduate and graduate students of courses on games and creativity; game developers who want to learn new methods for content generation; and researchers in related areas of artificial intelligence and computational intelligence.

354 citations

Proceedings ArticleDOI
01 Apr 2007
TL;DR: An evolvable track representation is devised, and a multiobjective evolutionary algorithm maximises the entertainment value of the track relative to a particular human player.
Abstract: Evolutionary algorithms are commonly used to create high-performing strategies or agents for computer games. In this paper, we instead choose to evolve the racing tracks in a car racing game. An evolvable track representation is devised, and a multiobjective evolutionary algorithm maximises the entertainment value of the track relative to a particular human player. This requires a way to create accurate models of players' driving styles, as well as a tentative definition of when a racing track is fun, both of which are provided. We believe this approach opens up interesting new research questions and is potentially applicable to commercial racing games.

284 citations

Journal ArticleDOI
12 Jun 2018
TL;DR: In this paper, a survey explores procedural content generation via machine learning (PCGML), defined as the generation of game content using machine learning models trained on existing content, focusing on what is most often considered functional game content, such as platformer levels, game maps, interactive fiction stories and cards in collectible card games.
Abstract: This survey explores procedural content generation via machine learning (PCGML), defined as the generation of game content using machine learning models trained on existing content. As the importance of PCG for game development increases, researchers explore new avenues for generating high-quality content with or without human involvement; this paper addresses the relatively new paradigm of using machine learning (in contrast with search-based, solver-based, and constructive methods). We focus on what is most often considered functional game content, such as platformer levels, game maps, interactive fiction stories, and cards in collectible card games, as opposed to cosmetic content, such as sprites and sound effects. In addition to using PCG for autonomous generation, cocreativity, mixed-initiative design, and compression, PCGML is suited for repair, critique, and content analysis because of its focus on modeling existing content. We discuss various data sources and representations that affect the generated content. Multiple PCGML methods are covered, including neural networks: long short-term memory networks, autoencoders, and deep convolutional networks; Markov models: $n$ -grams and multi-dimensional Markov chains; clustering; and matrix factorization. Finally, we discuss open problems in PCGML, including learning from small data sets, lack of training data, multilayered learning, style-transfer, parameter tuning, and PCG as a game mechanic.

278 citations


Cited by
More filters
Journal ArticleDOI
18 Jun 2018
TL;DR: This work proposes a novel architectural unit, which is term the "Squeeze-and-Excitation" (SE) block, that adaptively recalibrates channel-wise feature responses by explicitly modelling interdependencies between channels and finds that SE blocks produce significant performance improvements for existing state-of-the-art deep architectures at minimal additional computational cost.
Abstract: The central building block of convolutional neural networks (CNNs) is the convolution operator, which enables networks to construct informative features by fusing both spatial and channel-wise information within local receptive fields at each layer. A broad range of prior research has investigated the spatial component of this relationship, seeking to strengthen the representational power of a CNN by enhancing the quality of spatial encodings throughout its feature hierarchy. In this work, we focus instead on the channel relationship and propose a novel architectural unit, which we term the “Squeeze-and-Excitation” (SE) block, that adaptively recalibrates channel-wise feature responses by explicitly modelling interdependencies between channels. We show that these blocks can be stacked together to form SENet architectures that generalise extremely effectively across different datasets. We further demonstrate that SE blocks bring significant improvements in performance for existing state-of-the-art CNNs at slight additional computational cost. Squeeze-and-Excitation Networks formed the foundation of our ILSVRC 2017 classification submission which won first place and reduced the top-5 error to 2.251 percent, surpassing the winning entry of 2016 by a relative improvement of ${\sim }$ ∼ 25 percent. Models and code are available at https://github.com/hujie-frank/SENet .

14,807 citations

Journal ArticleDOI
TL;DR: This historical survey compactly summarizes relevant work, much of it from the previous millennium, review deep supervised learning, unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.

14,635 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations