scispace - formally typeset
Search or ask a question
Author

Juliana Benevenuto

Bio: Juliana Benevenuto is an academic researcher from University of Florida. The author has contributed to research in topics: Genome & Population. The author has an hindex of 8, co-authored 16 publications receiving 289 citations. Previous affiliations of Juliana Benevenuto include University of São Paulo & Universidade Federal de Viçosa.

Papers
More filters
Journal ArticleDOI
12 Jun 2015-PLOS ONE
TL;DR: The novel complete sequence described herein allowed us to identify and annotate extended subtelomeric regions, repetitive elements and the mitochondrial DNA sequence and some new candidates are proposed in smut/plant interactions.
Abstract: Sporisorium scitamineum is a biotrophic fungus responsible for the sugarcane smut, a worldwide spread disease. This study provides the complete sequence of individual chromosomes of S. scitamineum from telomere to telomere achieved by a combination of PacBio long reads and Illumina short reads sequence data, as well as a draft sequence of a second fungal strain. Comparative analysis to previous available sequences of another strain detected few polymorphisms among the three genomes. The novel complete sequence described herein allowed us to identify and annotate extended subtelomeric regions, repetitive elements and the mitochondrial DNA sequence. The genome comprises 19,979,571 bases, 6,677 genes encoding proteins, 111 tRNAs and 3 assembled copies of rDNA, out of our estimated number of copies as 130. Chromosomal reorganizations were detected when comparing to sequences of S. reilianum, the closest smut relative, potentially influenced by repeats of transposable elements. Repetitive elements may have also directed the linkage of the two mating-type loci. The fungal transcriptome profiling from in vitro and from interaction with sugarcane at two time points (early infection and whip emergence) revealed that 13.5% of the genes were differentially expressed in planta and particular to each developmental stage. Among them are plant cell wall degrading enzymes, proteases, lipases, chitin modification and lignin degradation enzymes, sugar transporters and transcriptional factors. The fungus also modulates transcription of genes related to surviving against reactive oxygen species and other toxic metabolites produced by the plant. Previously described effectors in smut/plant interactions were detected but some new candidates are proposed. Ten genomic islands harboring some of the candidate genes unique to S. scitamineum were expressed only in planta. RNAseq data was also used to reassure gene predictions.

81 citations

Journal ArticleDOI
TL;DR: It is argued that an understanding of genome evolution provides important insight into the trajectory of host-pathogen co-evolution, and how the compartmentalization of fungal genomes into core and accessory regions shapes the evolution of effector genes is argued.
Abstract: Epidemics caused by fungal plant pathogens pose a major threat to agro-ecosystems and impact global food security. High-throughput sequencing enabled major advances in understanding how pathogens cause disease on crops. Hundreds of fungal genomes are now available and analyzing these genomes highlighted the key role of effector genes in disease. Effectors are small secreted proteins that enhance infection by manipulating host metabolism. Fungal genomes carry hundreds of putative effector genes, but the lack of homology among effector genes, even for closely related species, challenges evolutionary and functional analyses. Furthermore, effector genes are often found in rapidly evolving chromosome compartments which are difficult to assemble. We review how population and comparative genomics toolsets can be combined to address these challenges. We highlight studies that associated genome-scale polymorphisms with pathogen lifestyles and adaptation to different environments. We show how genome-wide association studies can be used to identify effectors and other pathogenicity-related genes underlying rapid adaptation. We also discuss how the compartmentalization of fungal genomes into core and accessory regions shapes the evolution of effector genes. We argue that an understanding of genome evolution provides important insight into the trajectory of host-pathogen co-evolution.

80 citations

Journal ArticleDOI
TL;DR: To develop molecular breeding tools aimed at improving fruit flavor, a target genotyping and VOC extraction of a blueberry population was carried out and it was demonstrated that VOCs can be accurately predicted using genomic information and enhance or decrease consumer's overall liking.
Abstract: Plants produce a range of volatile organic compounds (VOCs), some of which are perceived by the human olfactory system, contributing to a myriad flavors. Despite the importance of flavor for consumer preference, most plant breeding programs have neglected it, mainly because of the costs of phenotyping and the complexity of disentangling the role of VOCs in human perception. To develop molecular breeding tools aimed at improving fruit flavor, we carried out target genotyping of and VOC extraction from a blueberry population. Metabolite genome-wide association analysis was used to elucidate the genetic architecture, while predictive models were tested to prove that VOCs can be accurately predicted using genomic information. A historical sensory panel was considered to assess how the volatiles influenced consumers. By gathering genomics, metabolomics, and the sensory panel, we demonstrated that VOCs are controlled by a few major genomic regions, some of which harbor biosynthetic enzyme-coding genes; can be accurately predicted using molecular markers; and can enhance or decrease consumers' overall liking. Here we emphasized how the understanding of the genetic basis and the role of VOCs in consumer preference can assist breeders in developing more flavorful cultivars at a more inexpensive and accelerated pace.

57 citations

Journal ArticleDOI
TL;DR: The results showed that the importance of tetraploids models varied by trait and that the use of diploid models has hindered the detection of SNP-trait associations and, consequently, the genetic architecture of some commercially important traits in autotetraploid species.
Abstract: Polyploidization is an ancient and recurrent process in plant evolution, impacting the diversification of natural populations and plant breeding strategies. Polyploidization occurs in many important crops; however, its effects on inheritance of many agronomic traits are still poorly understood compared with diploid species. Higher levels of allelic dosage or more complex interactions between alleles could affect the phenotype expression. Hence, the present study aimed to dissect the genetic basis of fruit-related traits in autotetraploid blueberries and identify candidate genes affecting phenotypic variation. We performed a genome-wide association study (GWAS) assuming diploid and tetraploid inheritance, encompassing distinct models of gene action (additive, general, different orders of allelic interaction and the corresponding diploidized models). A total of 1,575 southern highbush blueberry individuals from a breeding population of 117 full-sib families were genotyped using sequence capture and next-generation sequencing, and evaluated for eight fruit-related traits. For the diploid allele calling, 77,496 SNPs were detected; while 80,591 SNPs were obtained in tetraploid, with a high degree of overlap (95%) between them. A linear mixed model that accounted for population and family structure was used for the GWAS analyses. By modeling tetraploid genotypes, we detected 15 SNPs significantly associated with five fruit-related traits. Alternatively, seven significant SNPs were detected for only two traits using diploid genotypes, with two SNPs overlapping with the tetraploid scenario. Our results showed that the importance of tetraploid models varied by trait and that the use of diploid models has hindered the detection of SNP-trait associations and, consequently, the genetic architecture of some commercially important traits in autotetraploid species. Furthermore, 14 SNPs co-localized with candidate genes, five of which lead to non-synonymous amino acid changes. The potential functional significance of these SNPs is discussed.

51 citations

Journal ArticleDOI
TL;DR: The results of genome-wide association studies and genomic selection that were already published using a blueberry draft genome as reference are compared with the results using the recent released chromosome-scale and haplotype-phased blueberry genome.
Abstract: The decreasing costs of next-generation sequencing and the improvements in de novo sequence assemblers have made it possible to obtain reference genomes for most eukaryotes, including minor crops such as the blueberry (Vaccinium corymbosum). Nevertheless, these genomes are at various levels of completeness and few have been anchored to chromosome scale and/or are haplotype-phased. We highlight the impact of a high-quality genome assembly for plant breeding and genetic research by showing how it affects our understanding of the genetic architecture of important traits and aids marker selection and candidate gene detection. We compared the results of genome-wide association studies and genomic selection that were already published using a blueberry draft genome as reference with the results using the recent released chromosome-scale and haplotype-phased blueberry genome. We believe that the benefits shown herein reinforce the importance of genome assembly projects for other non-model species.

40 citations


Cited by
More filters
01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal ArticleDOI
17 Jul 2020-Science
TL;DR: The feasibility of using a genomics-based approach to predict individual bleaching responses is demonstrated and ways in which this can inform new strategies for coral conservation are suggested.
Abstract: Although reef-building corals are declining worldwide, responses to bleaching vary within and across species and are partly heritable. Toward predicting bleaching response from genomic data, we generated a chromosome-scale genome assembly for the coral Acropora millepora We obtained whole-genome sequences for 237 phenotyped samples collected at 12 reefs along the Great Barrier Reef, among which we inferred little population structure. Scanning the genome for evidence of local adaptation, we detected signatures of long-term balancing selection in the heat-shock co-chaperone sacsin We conducted a genome-wide association study of visual bleaching score for 213 samples, incorporating the polygenic score derived from it into a predictive model for bleaching in the wild. These results set the stage for genomics-based approaches in conservation strategies.

151 citations

Journal ArticleDOI
TL;DR: It is shown that the genome of S. scitamineum, a smut fungus parasitizing sugar cane with a phylogenetic position intermediate to the two previously sequenced species U. maydis and Sporisorium reilianum, contains more and larger gene clusters encoding secreted effectors than any previously described species in this group.
Abstract: Smut fungi are plant pathogens mostly parasitizing wild species of grasses as well as domesticated cereal crops. Genome analysis of several smut fungi including Ustilago maydis revealed a singular clustered organization of genes encoding secreted effectors. In U. maydis, many of these clusters have a role in virulence. Reconstructing the evolutionary history of clusters of effector genes is difficult because of their intrinsically fast evolution, which erodes the phylogenetic signal and homology relationships. Here, we describe the use of comparative evolutionary analyses of quality draft assemblies of genomes to study the mechanisms of this evolution. We report the genome sequence of a South African isolate of Sporisorium scitamineum, a smut fungus parasitizing sugar cane with a phylogenetic position intermediate to the two previously sequenced species U. maydis and Sporisorium reilianum. We show that the genome of S. scitamineum contains more and larger gene clusters encoding secreted effectors than any previously described species in this group. We trace back the origin of the clusters and find that their evolution is mainly driven by tandem gene duplication. In addition, transposable elements play a major role in the evolution of the clustered genes. Transposable elements are significantly associated with clusters of genes encoding fast evolving secreted effectors. This suggests that such clusters represent a case of genome compartmentalization that restrains the activity of transposable elements on genes under diversifying selection for which this activity is potentially beneficial, while protecting the rest of the genome from its deleterious effect.

110 citations

Journal ArticleDOI
TL;DR: This work reviews how effector genes emerged and were lost in pathogen genomes drawing on the links between effector evolution and chromosomal rearrangements.

88 citations

Journal ArticleDOI
TL;DR: The finding that the ScJAZ6 gene is associated with plant immunity and antimicrobial activity against Pseudomonas solanacearum and Fusarium solani var.
Abstract: Sugarcane smut caused by Sporisorium scitamineum is one of the most severe fungal diseases in the sugarcane industry. Using a molecular biological technique to mine sugarcane resistance genes can provide gene resources for further genetic engineering of sugarcane disease-resistant breeding. Jasmonate ZIM (zinc-finger inflorescence meristem) domain (JAZ) proteins, which involved in the responses to plant pathogens and abiotic stresses, are important signaling molecules of the jasmonic acid (JA) pathway. Seven differentially expressed sugarcane JAZ genes, ScJAZ1–ScJAZ7, were mined from the transcriptome of sugarcane after inoculation with S. scitamineum. Bioinformatic analyses revealed that these seven ScJAZ genes encoded basic proteins that contain the TIFY and CCT_2 domains. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis demonstrated that the ScJAZ1–ScJAZ7 genes were tissue specific and differentially expressed under adverse stress. During S. scitamineum infection, the transcripts of ScJAZ4 and ScJAZ5 were both upregulated in the susceptible genotype ROC22 and the resistant genotype Yacheng05–179; ScJAZ1, ScJAZ2, ScJAZ3, and ScJAZ7 were downregulated in Yacheng05–179 and upregulated in ROC22; and the expression of ScJAZ6 did not change in ROC22, but was upregulated in Yacheng05–179. The transcripts of the seven ScJAZ genes were increased by the stimuli of salicylic acid and abscisic acid, particularly methyl jasmonate. The expression of the genes ScJAZ1–ScJAZ7 was immediately upregulated by the stressors hydrogen peroxide, sodium chloride, and copper chloride, whereas slightly induced after treatment with calcium chloride and polyethylene glycol. In addition, the expression of ScJAZ6, as well as seven tobacco immunity-associated marker genes were upregulated, and antimicrobial activity against Pseudomonas solanacearum and Fusarium solani var. coeruleum was observed during the transient overexpression of ScJAZ6 in Nicotiana benthamiana, suggesting that the ScJAZ6 gene is associated with plant immunity. The different expression profiles of the ScJAZ1–ScJAZ7 genes during S. scitamineum infection, the positive response of ScJAZ1–ScJAZ7 to hormones and abiotic treatments, and the function analysis of the ScJAZ6 gene revealed their involvement in the defense against biotic and abiotic stresses. The findings of the present study facilitate further research on the ScJAZ gene family especially their regulatory mechanism in sugarcane.

81 citations