scispace - formally typeset
Search or ask a question
Author

Julie Venter

Bio: Julie Venter is an academic researcher from Texas A&M University. The author has contributed to research in topics: Cholangiocyte & Cholangiocyte proliferation. The author has an hindex of 30, co-authored 81 publications receiving 2333 citations. Previous affiliations of Julie Venter include Temple University & American Board of Legal Medicine.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, small and large cholangiocytes were treated with histamine trifluoromethyl toluidide (HTMT dimaleate; HRH1 agonist) for 24-48 h with/without terfenadine, BAPTA/AM, or W7 before measuring proliferation.
Abstract: Cholangiopathies are characterized by the heterogeneous proliferation of different-sized cholangiocytes. Large cholangiocytes proliferate by a cAMP-dependent mechanism. The function of small cholangiocytes may depend on the activation of inositol trisphosphate (IP(3))/Ca(2+)-dependent signaling pathways; however, data supporting this speculation are lacking. Four histamine receptors exist (HRH1, HRH2, HRH3, and HRH4). In several cells: 1) activation of HRH1 increases intracellular Ca(2+) concentration levels; and 2) increased [Ca(2+)](i) levels are coupled with calmodulin-dependent stimulation of calmodulin-dependent protein kinase (CaMK) and activation of cAMP-response element binding protein (CREB). HRH1 agonists modulate small cholangiocyte proliferation by activation of IP(3)/Ca(2+)-dependent CaMK/CREB. We evaluated HRH1 expression in cholangiocytes. Small and large cholangiocytes were stimulated with histamine trifluoromethyl toluidide (HTMT dimaleate; HRH1 agonist) for 24-48 h with/without terfenadine, BAPTA/AM, or W7 before measuring proliferation. Expression of CaMK I, II, and IV was evaluated in small and large cholangiocytes. We measured IP(3), Ca(2+) and cAMP levels, phosphorylation of CaMK I, and activation of CREB (in the absence/presence of W7) in small cholangiocytes treated with HTMT dimaleate. CaMK I knockdown was performed in small cholangiocytes stimulated with HTMT dimaleate before measurement of proliferation and CREB activity. Small and large cholangiocytes express HRH1, CaMK I, and CaMK II. Small (but not large) cholangiocytes proliferate in response to HTMT dimaleate and are blocked by terfenadine (HRH1 antagonist), BAPTA/AM, and W7. In small cholangiocytes, HTMT dimaleate increased IP(3)/Ca(2+) levels, CaMK I phosphorylation, and CREB activity. Gene knockdown of CaMK I ablated the effects of HTMT dimaleate on small cholangiocyte proliferation and CREB activation. The IP(3)/Ca(2+)/CaMK I/CREB pathway is important in the regulation of small cholangiocyte function.

125 citations

Journal ArticleDOI
TL;DR: In situ morphometry established that the biliary epithelium of mice is morphologically heterogeneous, with smaller cholangiocytes lining smaller bile ducts and larger cholangaocytes lining larger ducts, and the mouse is a suitable model for defining the heterogeneity of the bile tree.

124 citations

Journal ArticleDOI
TL;DR: In this paper, the expression of microRNAs in hepatocellular cancer stem cells (HSCs) was evaluated by microarray profiling, and defined the target genes and functional effects of two groups of microRNA regulated by IL-6 and transcriptional factor Twist.
Abstract: MicroRNAs are endogenous small non-coding RNAs that regulate gene expression and cancer development. A rare population of hepatocellular cancer stem cells (HSCs) holds the extensive proliferative and self-renewal potential necessary to form a liver tumour. We postulated that specific transcriptional factors might regulate the expression of microRNAs and subsequently modulate the expression of gene products involved in phenotypic characteristics of HSCs. We evaluated the expression of microRNA in human HSCs by microarray profiling, and defined the target genes and functional effects of two groups of microRNA regulated by IL-6 and transcriptional factor Twist. A subset of highly chemoresistant and invasive HSCs was screened with aberrant expressions of cytokine IL-6 and Twist. We demonstrated that conserved let-7 and miR-181 family members were up-regulated in HSCs by global microarray-based microRNA profiling followed by validation with real-time polymerase chain reaction. Importantly, inhibition of let-7 increases the chemosensitivity of HSCs to sorafenib and doxorubicin whereas silencing of miR-181 led to a reduction in HSCs motility and invasion. Knocking down IL-6 and Twist in HSCs significantly reduced let-7 and miR-181 expression and subsequently inhibited chemoresistance and cell invasion. We showed that let-7 directly targets SOCS-1 and caspase-3, whereas miR-181 directly targets RASSF1A, TIMP3 as well as nemo-like kinase (NLK). In conclusion, alterations of IL-6- and Twist-regulated microRNA expression in HSCs play a part in tumour spreading and responsiveness to chemotherapy. Our results define a novel regulatory mechanism of let-7/miR-181s suggesting that let-7 and miR-181 may be molecular targets for eradication of hepatocellular malignancies.

121 citations

Journal ArticleDOI
TL;DR: The data presented here represent the first evidence that serotonin metabolism is dysregulated in cholangiocarcinoma and that modulation of serotonin synthesis may represent an alternative target for the development of therapeutic strategies.
Abstract: Cholangiocarcinoma is a devastating cancer of biliary origin with limited treatment options. Symptoms are usually evident after blockage of the bile duct by the tumor, and at this late stage, they are relatively resistant to chemotherapy and radiation therapy. Therefore, it is imperative that alternative treatment options are explored. We present novel data indicating that the metabolism of serotonin is dysregulated in cholangiocarcinoma cell lines, compared with normal cholangiocytes, and tissue and bile from cholangiocarcinoma patients. Specifically, there was an increased expression of tryptophan hydroxylase 1 and a suppression of monoamine oxidase A expression (enzymes responsible for the synthesis and degradation of serotonin, respectively) in cholangiocarcinoma. This resulted in an increased secretion of serotonin from cholangiocarcinoma and increased serotonin in the bile from cholangiocarcinoma patients. Increased local serotonin release may have implications on cholangiocarcinoma cell growth. Serotonin administration increased cholangiocarcinoma cell growth in vitro, whereas inhibition of serotonin synthesis decreases tumor cell growth both in vitro and in vivo. The data presented here represent the first evidence that serotonin metabolism is dysregulated in cholangiocarcinoma and that modulation of serotonin synthesis may represent an alternative target for the development of therapeutic strategies. [Cancer Res 2008;68(22):9184–93]

97 citations

Journal ArticleDOI
TL;DR: The objectives of this review are to outline the recent findings related to the morphological heterogeneity of the biliary epithelium and the heterogeneous pathophysiological responses of different sized bile ducts to liver gastrointestinal hormones and peptides and liver injury/toxins with changes in apoptotic, proliferative and secretory activities.
Abstract: The objectives of this review are to outline the recent findings related to the morphological heterogeneity of the biliary epithelium and the heterogeneous pathophysiological responses of different sized bile ducts to liver gastrointestinal hormones and peptides and liver injury/toxins with changes in apoptotic, proliferative and secretory activities. The knowledge of biliary function is rapidly increasing because of the recognition that biliary epithelial cells (cholangiocytes) are the targets of human cholangiopathies, which are characterized by proliferation/damage of bile ducts within a small range of sizes. The unique anatomy, morphology, innervation and vascularization of the biliary epithelium are consistent with function of cholangiocytes within different regions of the biliary tree. The in vivo models [e.g., bile duct ligation (BDL), partial hepatectomy, feeding of bile acids, carbon tetrachloride (CCl4) or alpha-naphthylisothiocyanate (ANIT)] and the in vivo experimental tools [e.g., freshly isolated small and large cholangiocytes or intrahepatic bile duct units (IBDU) and primary cultures of small and large murine cholangiocytes] have allowed us to demonstrate the morphological and functional heterogeneity of the intrahepatic biliary epithelium. These models demonstrated the differential secretory activities and the heterogeneous apoptotic and proliferative responses of different sized ducts. Similar to animal models of cholangiocyte proliferation/injury restricted to specific sized ducts, in human liver diseases bile duct damage predominates specific sized bile ducts. Future studies related to the functional heterogeneity of the intrahepatic biliary epithelium may disclose new pathophysiological treatments for patients with cholangiopathies.

88 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Using cell-culture and animal models has expanded understanding of the mechanisms underlying stellate cell activation and has shed new light on genetic regulation, the contribution of immune signaling, and the potential reversibility of the disease.
Abstract: Liver fibrosis is a major cause of morbidity and mortality worldwide due to chronic viral hepatitis and, more recently, from fatty liver disease associated with obesity. Hepatic stellate cell activation represents a critical event in fibrosis because these cells become the primary source of extracellular matrix in liver upon injury. Use of cell-culture and animal models has expanded our understanding of the mechanisms underlying stellate cell activation and has shed new light on genetic regulation, the contribution of immune signaling, and the potential reversibility of the disease. As pathways of fibrogenesis are increasingly clarified, the key challenge will be translating new advances into the development of antifibrotic therapies for patients with chronic liver disease.

1,338 citations

Journal ArticleDOI
TL;DR: The role of these cytokines in important events of carcinogenesis, such as their capacity to generate reactive oxygen and nitrogen species, their potential mutagenic effect, and their involvement in mechanisms for epithelial mesenchymal transition, angiogenesis, and metastasis are explored.
Abstract: Acute inflammation is a response to an alteration induced by a pathogen or a physical or chemical insult, which functions to eliminate the source of the damage and restore homeostasis to the affected tissue. However, chronic inflammation triggers cellular events that can promote malignant transformation of cells and carcinogenesis. Several inflammatory mediators, such as TNF-α, IL-6, TGF-β, and IL-10, have been shown to participate in both the initiation and progression of cancer. In this review, we explore the role of these cytokines in important events of carcinogenesis, such as their capacity to generate reactive oxygen and nitrogen species, their potential mutagenic effect, and their involvement in mechanisms for epithelial mesenchymal transition, angiogenesis, and metastasis. Finally, we will provide an in-depth analysis of the participation of these cytokines in two types of cancer attributable to chronic inflammatory disease: colitis-associated colorectal cancer and cholangiocarcinoma.

1,311 citations

Journal ArticleDOI
TL;DR: A better understanding of the imaging characteristics of iCCAs is gained and advanced cytologic techniques to detect pCCAs are developed, along with advances in classification, diagnosis, and treatment.

930 citations

01 Jan 1999
TL;DR: In this article, anandamide attenuates the pain behavior produced by chemical damage to cutaneous tissue by interacting with CB1-like cannabinoid receptors located outside the central nervous system.
Abstract: The potent analgesic effects of cannabis-like drugs and the presence of CB1-type cannabinoid receptors in pain-processing areas of the brain and spinal cord, indicate that endogenous cannabinoids such as anandamide may contribute to the control of pain transmission within the central nervous system (CNS). Here we show that anandamide attenuates the pain behaviour produced by chemical damage to cutaneous tissue by interacting with CB1-like cannabinoid receptors located outside the CNS. Palmitylethanolamide (PEA), which is released together with anandamide from a common phospholipid precursor, exerts a similar effect by activating peripheral CB2-like receptors. When administered together, the two compounds act synergistically, reducing pain responses 100-fold more potently than does each compound alone. Gas-chromatography/mass-spectrometry measurements indicate that the levels of anandamide and PEA in the skin are enough to cause a tonic activation of local cannabinoid receptors. In agreement with this possibility, the CB1 antagonist SR141716A and the CB2 antagonist SR144528 prolong and enhance the pain behaviour produced by tissue damage. These results indicate that peripheral CB1-like and CB2-like receptors participate in the intrinsic control of pain initiation and that locally generated anandamide and PEA may mediate this effect.

918 citations

Journal ArticleDOI
TL;DR: This Consensus Statement aims to provide valuable information on classifications, pathological features, risk factors, cells of origin, genetic and epigenetic modifications and current therapies available for this cancer.
Abstract: Cholangiocarcinoma (CCA) is a heterogeneous group of malignancies with features of biliary tract differentiation. CCA is the second most common primary liver tumour and the incidence is increasing worldwide. CCA has high mortality owing to its aggressiveness, late diagnosis and refractory nature. In May 2015, the "European Network for the Study of Cholangiocarcinoma" (ENS-CCA: www.enscca.org or www.cholangiocarcinoma.eu) was created to promote and boost international research collaboration on the study of CCA at basic, translational and clinical level. In this Consensus Statement, we aim to provide valuable information on classifications, pathological features, risk factors, cells of origin, genetic and epigenetic modifications and current therapies available for this cancer. Moreover, future directions on basic and clinical investigations and plans for the ENS-CCA are highlighted.

904 citations