scispace - formally typeset
Search or ask a question
Author

Julien Favresse

Bio: Julien Favresse is an academic researcher from Université de Namur. The author has contributed to research in topics: Medicine & Coronavirus disease 2019 (COVID-19). The author has an hindex of 14, co-authored 61 publications receiving 716 citations. Previous affiliations of Julien Favresse include Université catholique de Louvain & Catholic University of Leuven.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: Based on the pattern of thyroid function test alterations, to screen for the six main types of interference, a detection algorithm is proposed, which should facilitate their identification in clinical practice and the clinical impact of thyroid interference on immunoassays is evaluated.
Abstract: Automated immunoassays used to evaluate thyroid function are vulnerable to different types of interference that can affect clinical decisions. This review provides a detailed overview of the six main types of interference known to affect measurements of thyroid stimulating hormone (TSH), free thyroxine (T4) and free triiodothyronine (T3): macro-TSH, biotin, antistreptavidin antibodies, anti-ruthenium antibodies, thyroid hormone autoantibodies, and heterophilic antibodies. Because the prevalence of some of these conditions has been reported to approach 1% and the frequency of testing for thyroid dysfunction is important, the scale of the problem might be tremendous. Potential interferences in thyroid function testing should always be suspected whenever clinical or biochemical discrepancies arise. Their identification usually relies on additional laboratory tests, including assay method comparison, dilution procedures, blocking reagents studies, and polyethylene glycol precipitation. Based on the pattern of thyroid function test alterations, to screen for the six aforementioned types of interference, we propose a detection algorithm, which should facilitate their identification in clinical practice. The review also evaluates the clinical impact of thyroid interference on immunoassays. On review of reported data from more than 150 patients, we found that ≥50% of documented thyroid interferences led to misdiagnosis and/or inappropriate management, including prescription of an unnecessary treatment (with adverse effects in some situations), inappropriate suppression or modification of an ongoing treatment, or use of unnecessary complementary tests such as an I123 thyroid scan. Strong interaction between the clinician and the laboratory is necessary to avoid such pitfalls.

153 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reported on the humoral response in subjects having received the BNT162b2 mRNA COVID-19 vaccine, but no data on the kinetics of antibodies 3 months post-vaccination are currently available.
Abstract: Several studies reported on the humoral response in subjects having received the BNT162b2 mRNA COVID-19 vaccine. However, data on the kinetics of antibodies 3 months post-vaccination are currently ...

132 citations

Journal ArticleDOI
TL;DR: D-dimer is a soluble fibrin degradation product deriving from the plasmin-mediated degradation of cross-linkedfibrin that can be considered a biomarker of activation of coagulation and fibrinolysis and it is routinely used for ruling out venous thromboembolism.
Abstract: D-dimer is a soluble fibrin degradation product deriving from the plasmin-mediated degradation of cross-linked fibrin. D-dimer can hence be considered a biomarker of activation of coagulation and fibrinolysis, and it is routinely used for ruling out venous thromboembolism (VTE). D-dimer is increasingly used to assess the risk of VTE recurrence and to help define the optimal duration of anticoagulation treatment in patients with VTE, for diagnosing disseminated intravascular coagulation, and for screening medical patients at increased risk of VTE. This review is aimed at (1) revising the definition of D-dimer; (2) discussing preanalytical variables affecting the measurement of D-dimer; (3) reviewing and comparing assay performance and some postanalytical variables (e.g. different units and age-adjusted cutoffs); and (4) discussing the use of D-dimer measurement across different clinical settings.

105 citations

Journal ArticleDOI
TL;DR: This evaluation aims to demonstrate the importance of knowing the carrier and removal status of canine coronavirus in the diagnosis and treatment of SARS.
Abstract: Julien Favresse1,2*, Christine Eucher1, Marc Elsen1, Tré-Hardy Marie2,3, Jean-Michel Dogné2, Jonathan Douxfils2,4. 1 Department of Laboratory Medicine, Clinique St-Luc Bouge, Namur, Belgium. 2 Department of Pharmacy, Namur Research Institute for LIfes Sciences, University of Namur, Belgium 3 Department of Laboratory Medicine, Iris Hospitals South, Brussels, Belgium. 4 Qualiblood sa, Namur, Belgium *Correspondence: Julien Favresse Department of Laboratory Medicine, Clinique Saint-Luc Bouge 8 Rue Saint-Luc, B-5000 Bouge, Belgium Phone +32 81 20 91 44 Email: j.favresse@labstluc.be Running title: Elecsys anti-SARS-CoV-2 evaluation.

99 citations

Journal ArticleDOI
28 Sep 2021-Vaccine
TL;DR: The antibody decline observed in a population of COVID-19 naïve and CO VID-19 positive individuals having received the two dose regimen of the BNT162b2 vaccine six months after vaccination is reported.

92 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Congratulations to Dr. Baselt for the publication of his 10th edition and the expansion of his classic toxicology text to cover over 1,500 medications and chemicals.
Abstract: Congratulations to Dr. Baselt for the publication of his 10th edition and the expansion of his classic toxicology text to cover over 1,500 medications and chemicals. This enduring work provides a c...

429 citations

Journal ArticleDOI
01 Apr 2022
TL;DR: In this article , the authors assessed the immune persistence of a two-dose schedule of CoronaVac, and the immunogenicity and safety of a third dose in healthy adults aged 18 years and older.
Abstract: BackgroundLarge-scale vaccination against COVID-19 is being implemented in many countries with CoronaVac, an inactivated vaccine. We aimed to assess the immune persistence of a two-dose schedule of CoronaVac, and the immunogenicity and safety of a third dose of CoronaVac, in healthy adults aged 18 years and older.MethodsIn the first of two single-centre, double-blind, randomised, placebo-controlled phase 2 clinical trials, adults aged 18–59 years in Jiangsu, China, were initially allocated (1:1) into two vaccination schedule cohorts: a day 0 and day 14 vaccination cohort (cohort 1) and a day 0 and day 28 vaccination cohort (cohort 2); each cohort was randomly assigned (2:2:1) to either a 3 μg dose or 6 μg dose of CoronaVac or a placebo group. Following a protocol amendment on Dec 25, 2020, half of the participants in each cohort were allocated to receive an additional dose 28 days (window period 30 days) after the second dose, and the other half were allocated to receive a third dose 6 months (window period 60 days) after the second dose. In the other phase 2 trial, in Hebei, China, participants aged 60 years and older were assigned sequentially to receive three injections of either 1·5 μg, 3 μg, or 6 μg of vaccine or placebo, administered 28 days apart for the first two doses and 6 months (window period 90 days) apart for doses two and three. The main outcomes of the study were geometric mean titres (GMTs), geometric mean increases (GMIs), and seropositivity of neutralising antibody to SARS-CoV-2 (virus strain SARS-CoV-2/human/CHN/CN1/2020, GenBank accession number MT407649.1), as analysed in the per-protocol population (all participants who completed their assigned third dose). Our reporting is focused on the 3 μg groups, since 3 μg is the licensed formulation. The trials are registered with ClinicalTrials.gov, NCT04352608 and NCT04383574.Findings540 (90%) of 600 participants aged 18–59 years were eligible to receive a third dose, of whom 269 (50%) received the primary third dose 2 months after the second dose (cohorts 1a-14d-2m and 2a-28d-2m) and 271 (50%) received a booster dose 8 months after the second dose (cohorts 1b-14d-8m and 2b-28d-8m). In the 3 μg group, neutralising antibody titres induced by the first two doses declined after 6 months to near or below the seropositive cutoff (GMT of 8) for cohort 1b-14d-8m (n=53; GMT 3·9 [95% CI 3·1–5·0]) and for cohort 2b-28d-8m (n=49; 6·8 [5·2–8·8]). When a booster dose was given 8 months after a second dose, GMTs assessed 14 days later increased to 137·9 (95% CI 99·9–190·4) for cohort 1b-14d-8m and 143·1 (110·8–184·7) 28 days later for cohort 2b-28d-8m. GMTs moderately increased following a primary third dose, from 21·8 (95% CI 17·3–27·6) on day 28 after the second dose to 45·8 (35·7–58·9) on day 28 after the third dose in cohort 1a-14d-2m (n=54), and from 38·1 (28·4–51·1) to 49·7 (39·9–61·9) in cohort 2a-28d-2m (n=53). GMTs had decayed to near the positive threshold by 6 months after the third dose: GMT 9·2 (95% CI 7·1–12·0) in cohort 1a-14d-2m and 10·0 (7·3–13·7) in cohort 2a-28d-2m. Similarly, in adults aged 60 years and older who received booster doses (303 [87%] of 350 participants were eligible to receive a third dose), neutralising antibody titres had declined to near or below the seropositive threshold by 6 months after the primary two-dose series. A third dose given 8 months after the second dose significantly increased neutralising antibody concentrations: GMTs increased from 42·9 (95% CI 31·0–59·4) on day 28 after the second dose to 158·5 (96·6–259·2) on day 28 following the third dose (n=29). All adverse reactions reported within 28 days after a third dose were of grade 1 or 2 severity in all vaccination cohorts. There were three serious adverse events (2%) reported by the 150 participants in cohort 1a-14d-2m, four (3%) by 150 participants from cohort 1b-14d-8m, one (1%) by 150 participants in each of cohorts 2a-28d-2m and 2b-28d-8m, and 24 (7%) by 349 participants from cohort 3-28d-8m.InterpretationA third dose of CoronaVac in adults administered 8 months after a second dose effectively recalled specific immune responses to SARS-CoV-2, which had declined substantially 6 months after two doses of CoronaVac, resulting in a remarkable increase in the concentration of antibodies and indicating that a two-dose schedule generates good immune memory, and a primary third dose given 2 months after the second dose induced slightly higher antibody titres than the primary two doses.FundingNational Key Research and Development Program, Beijing Science and Technology Program, and Key Program of the National Natural Science Foundation of China.TranslationFor the Mandarin translation of the abstract see Supplementary Materials section. Large-scale vaccination against COVID-19 is being implemented in many countries with CoronaVac, an inactivated vaccine. We aimed to assess the immune persistence of a two-dose schedule of CoronaVac, and the immunogenicity and safety of a third dose of CoronaVac, in healthy adults aged 18 years and older. In the first of two single-centre, double-blind, randomised, placebo-controlled phase 2 clinical trials, adults aged 18–59 years in Jiangsu, China, were initially allocated (1:1) into two vaccination schedule cohorts: a day 0 and day 14 vaccination cohort (cohort 1) and a day 0 and day 28 vaccination cohort (cohort 2); each cohort was randomly assigned (2:2:1) to either a 3 μg dose or 6 μg dose of CoronaVac or a placebo group. Following a protocol amendment on Dec 25, 2020, half of the participants in each cohort were allocated to receive an additional dose 28 days (window period 30 days) after the second dose, and the other half were allocated to receive a third dose 6 months (window period 60 days) after the second dose. In the other phase 2 trial, in Hebei, China, participants aged 60 years and older were assigned sequentially to receive three injections of either 1·5 μg, 3 μg, or 6 μg of vaccine or placebo, administered 28 days apart for the first two doses and 6 months (window period 90 days) apart for doses two and three. The main outcomes of the study were geometric mean titres (GMTs), geometric mean increases (GMIs), and seropositivity of neutralising antibody to SARS-CoV-2 (virus strain SARS-CoV-2/human/CHN/CN1/2020, GenBank accession number MT407649.1), as analysed in the per-protocol population (all participants who completed their assigned third dose). Our reporting is focused on the 3 μg groups, since 3 μg is the licensed formulation. The trials are registered with ClinicalTrials.gov, NCT04352608 and NCT04383574. 540 (90%) of 600 participants aged 18–59 years were eligible to receive a third dose, of whom 269 (50%) received the primary third dose 2 months after the second dose (cohorts 1a-14d-2m and 2a-28d-2m) and 271 (50%) received a booster dose 8 months after the second dose (cohorts 1b-14d-8m and 2b-28d-8m). In the 3 μg group, neutralising antibody titres induced by the first two doses declined after 6 months to near or below the seropositive cutoff (GMT of 8) for cohort 1b-14d-8m (n=53; GMT 3·9 [95% CI 3·1–5·0]) and for cohort 2b-28d-8m (n=49; 6·8 [5·2–8·8]). When a booster dose was given 8 months after a second dose, GMTs assessed 14 days later increased to 137·9 (95% CI 99·9–190·4) for cohort 1b-14d-8m and 143·1 (110·8–184·7) 28 days later for cohort 2b-28d-8m. GMTs moderately increased following a primary third dose, from 21·8 (95% CI 17·3–27·6) on day 28 after the second dose to 45·8 (35·7–58·9) on day 28 after the third dose in cohort 1a-14d-2m (n=54), and from 38·1 (28·4–51·1) to 49·7 (39·9–61·9) in cohort 2a-28d-2m (n=53). GMTs had decayed to near the positive threshold by 6 months after the third dose: GMT 9·2 (95% CI 7·1–12·0) in cohort 1a-14d-2m and 10·0 (7·3–13·7) in cohort 2a-28d-2m. Similarly, in adults aged 60 years and older who received booster doses (303 [87%] of 350 participants were eligible to receive a third dose), neutralising antibody titres had declined to near or below the seropositive threshold by 6 months after the primary two-dose series. A third dose given 8 months after the second dose significantly increased neutralising antibody concentrations: GMTs increased from 42·9 (95% CI 31·0–59·4) on day 28 after the second dose to 158·5 (96·6–259·2) on day 28 following the third dose (n=29). All adverse reactions reported within 28 days after a third dose were of grade 1 or 2 severity in all vaccination cohorts. There were three serious adverse events (2%) reported by the 150 participants in cohort 1a-14d-2m, four (3%) by 150 participants from cohort 1b-14d-8m, one (1%) by 150 participants in each of cohorts 2a-28d-2m and 2b-28d-8m, and 24 (7%) by 349 participants from cohort 3-28d-8m. A third dose of CoronaVac in adults administered 8 months after a second dose effectively recalled specific immune responses to SARS-CoV-2, which had declined substantially 6 months after two doses of CoronaVac, resulting in a remarkable increase in the concentration of antibodies and indicating that a two-dose schedule generates good immune memory, and a primary third dose given 2 months after the second dose induced slightly higher antibody titres than the primary two doses.

187 citations

Journal ArticleDOI
TL;DR: A systematic review and meta-analysis of commercially available rapid diagnostic tests (Ag-RDTs) for SARS-CoV-2 up until 30 April 2021 was conducted in this paper.
Abstract: Background SARS-CoV-2 antigen rapid diagnostic tests (Ag-RDTs) are increasingly being integrated in testing strategies around the world. Studies of the Ag-RDTs have shown variable performance. In this systematic review and meta-analysis, we assessed the clinical accuracy (sensitivity and specificity) of commercially available Ag-RDTs. Methods and findings We registered the review on PROSPERO (registration number: CRD42020225140). We systematically searched multiple databases (PubMed, Web of Science Core Collection, medRvix, bioRvix, and FIND) for publications evaluating the accuracy of Ag-RDTs for SARS-CoV-2 up until 30 April 2021. Descriptive analyses of all studies were performed, and when more than 4 studies were available, a random-effects meta-analysis was used to estimate pooled sensitivity and specificity in comparison to reverse transcription polymerase chain reaction (RT-PCR) testing. We assessed heterogeneity by subgroup analyses, and rated study quality and risk of bias using the QUADAS-2 assessment tool. From a total of 14,254 articles, we included 133 analytical and clinical studies resulting in 214 clinical accuracy datasets with 112,323 samples. Across all meta-analyzed samples, the pooled Ag-RDT sensitivity and specificity were 71.2% (95% CI 68.2% to 74.0%) and 98.9% (95% CI 98.6% to 99.1%), respectively. Sensitivity increased to 76.3% (95% CI 73.1% to 79.2%) if analysis was restricted to studies that followed the Ag-RDT manufacturers’ instructions. LumiraDx showed the highest sensitivity, with 88.2% (95% CI 59.0% to 97.5%). Of instrument-free Ag-RDTs, Standard Q nasal performed best, with 80.2% sensitivity (95% CI 70.3% to 87.4%). Across all Ag-RDTs, sensitivity was markedly better on samples with lower RT-PCR cycle threshold (Ct) values, i.e., <20 (96.5%, 95% CI 92.6% to 98.4%) and <25 (95.8%, 95% CI 92.3% to 97.8%), in comparison to those with Ct ≥ 25 (50.7%, 95% CI 35.6% to 65.8%) and ≥30 (20.9%, 95% CI 12.5% to 32.8%). Testing in the first week from symptom onset resulted in substantially higher sensitivity (83.8%, 95% CI 76.3% to 89.2%) compared to testing after 1 week (61.5%, 95% CI 52.2% to 70.0%). The best Ag-RDT sensitivity was found with anterior nasal sampling (75.5%, 95% CI 70.4% to 79.9%), in comparison to other sample types (e.g., nasopharyngeal, 71.6%, 95% CI 68.1% to 74.9%), although CIs were overlapping. Concerns of bias were raised across all datasets, and financial support from the manufacturer was reported in 24.1% of datasets. Our analysis was limited by the included studies’ heterogeneity in design and reporting. Conclusions In this study we found that Ag-RDTs detect the vast majority of SARS-CoV-2-infected persons within the first week of symptom onset and those with high viral load. Thus, they can have high utility for diagnostic purposes in the early phase of disease, making them a valuable tool to fight the spread of SARS-CoV-2. Standardization in conduct and reporting of clinical accuracy studies would improve comparability and use of data.

181 citations