scispace - formally typeset
Search or ask a question
Author

Juliette Stehlé

Bio: Juliette Stehlé is an academic researcher from Centre national de la recherche scientifique. The author has contributed to research in topics: Interpersonal ties & Homophily. The author has an hindex of 8, co-authored 8 publications receiving 2375 citations. Previous affiliations of Juliette Stehlé include Aix-Marseille University & University of the South, Toulon-Var.

Papers
More filters
Journal ArticleDOI
TL;DR: Data on the time-resolved face-to-face proximity of individuals in large-scale real-world scenarios is analyzed to investigate the dynamics of a susceptible-infected model for epidemic spreading that unfolds on the dynamical networks of human proximity.

853 citations

Journal ArticleDOI
16 Aug 2011-PLOS ONE
TL;DR: The results can help define a prioritization of control measures based on preventive measures, case isolation, classes and school closures, that could reduce the disruption to education during epidemics.
Abstract: Little quantitative information is available on the mixing patterns of children in school environments. Describing and understanding contacts between children at school would help quantify the transmission opportunities of respiratory infections and identify situations within schools where the risk of transmission is higher. We report on measurements carried out in a French school (6-12 years children), where we collected data on the time-resolved face-to-face proximity of children and teachers using a proximity-sensing infrastructure based on radio frequency identification devices. Data on face-to-face interactions were collected on Thursday, October 1st and Friday, October 2nd 2009. We recorded 77,602 contact events between 242 individuals (232 children and 10 teachers). In this setting, each child has on average 323 contacts per day with 47 other children, leading to an average daily interaction time of 176 minutes. Most contacts are brief, but long contacts are also observed. Contacts occur mostly within each class, and each child spends on average three times more time in contact with classmates than with children of other classes. We describe the temporal evolution of the contact network and the trajectories followed by the children in the school, which constrain the contact patterns. We determine an exposure matrix aimed at informing mathematical models. This matrix exhibits a class and age structure which is very different from the homogeneous mixing hypothesis. We report on important properties of the contact patterns between school children that are relevant for modeling the propagation of diseases and for evaluating control measures. We discuss public health implications related to the management of schools in case of epidemics and pandemics. Our results can help define a prioritization of control measures based on preventive measures, case isolation, classes and school closures, that could reduce the disruption to education during epidemics.

745 citations

Journal ArticleDOI
TL;DR: In this paper, the authors assess the role of data-driven dynamic contact patterns among individuals, and in particular of their temporal aspects, in shaping the spread of a simulated epidemic in the population.
Abstract: BACKGROUND: The spread of infectious diseases crucially depends on the pattern of contacts among individuals. Knowledge of these patterns is thus essential to inform models and computational efforts. Few empirical studies are however available that provide estimates of the number and duration of contacts among social groups. Moreover, their space and time resolution are limited, so that data is not explicit at the person-to-person level, and the dynamical aspect of the contacts is disregarded. Here, we want to assess the role of data-driven dynamic contact patterns among individuals, and in particular of their temporal aspects, in shaping the spread of a simulated epidemic in the population. METHODS: We consider high resolution data of face-to-face interactions between the attendees of a conference, obtained from the deployment of an infrastructure based on Radio Frequency Identification (RFID) devices that assess mutual face-to-face proximity. The spread of epidemics along these interactions is simulated through an SEIR model, using both the dynamical network of contacts defined by the collected data, and two aggregated versions of such network, in order to assess the role of the data temporal aspects. RESULTS: We show that, on the timescales considered, an aggregated network taking into account the daily duration of contacts is a good approximation to the full resolution network, whereas a homogeneous representation which retains only the topology of the contact network fails in reproducing the size of the epidemic. CONCLUSIONS: These results have important implications in understanding the level of detail needed to correctly inform computational models for the study and management of real epidemics. Please see related article BMC Medicine, 2011, 9:88.

348 citations

Journal ArticleDOI
TL;DR: Assessing the role of data-driven dynamic contact patterns between individuals, and in particular of their temporal aspects, in shaping the spread of a simulated epidemic in the population shows that an aggregated network taking into account the daily duration of contacts is a good approximation to the full resolution network.
Abstract: The spread of infectious diseases crucially depends on the pattern of contacts among individuals. Knowledge of these patterns is thus essential to inform models and computational efforts. Few empirical studies are however available that provide estimates of the number and duration of contacts among social groups. Moreover, their space and time resolution are limited, so that data is not explicit at the person-to-person level, and the dynamical aspect of the contacts is disregarded. Here, we want to assess the role of data-driven dynamic contact patterns among individuals, and in particular of their temporal aspects, in shaping the spread of a simulated epidemic in the population. We consider high resolution data of face-to-face interactions between the attendees of a conference, obtained from the deployment of an infrastructure based on Radio Frequency Identification (RFID) devices that assess mutual face-to-face proximity. The spread of epidemics along these interactions is simulated through an SEIR model, using both the dynamical network of contacts defined by the collected data, and two aggregated versions of such network, in order to assess the role of the data temporal aspects. We show that, on the timescales considered, an aggregated network taking into account the daily duration of contacts is a good approximation to the full resolution network, whereas a homogeneous representation which retains only the topology of the contact network fails in reproducing the size of the epidemic. These results have important implications in understanding the level of detail needed to correctly inform computational models for the study and management of real epidemics.

311 citations

Journal ArticleDOI
TL;DR: The modeling framework can be easily extended and paves the way for systematic investigations of dynamical processes occurring on rapidly evolving dynamical networks, such as the propagation of an information or spreading of diseases.
Abstract: We present a modeling framework for dynamical and bursty contact networks made of agents in social interaction. We consider agents' behavior at short time scales in which the contact network is formed by disconnected cliques of different sizes. At each time a random agent can make a transition from being isolated to being part of a group or vice versa. Different distributions of contact times and intercontact times between individuals are obtained by considering transition probabilities with memory effects, i.e., the transition probabilities for each agent depend both on its state (isolated or interacting) and on the time elapsed since the last change in state. The model lends itself to analytical and numerical investigations. The modeling framework can be easily extended and paves the way for systematic investigations of dynamical processes occurring on rapidly evolving dynamical networks, such as the propagation of an information or spreading of diseases.

163 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A coherent and comprehensive review of the vast research activity concerning epidemic processes is presented, detailing the successful theoretical approaches as well as making their limits and assumptions clear.
Abstract: Complex networks arise in a wide range of biological and sociotechnical systems. Epidemic spreading is central to our understanding of dynamical processes in complex networks, and is of interest to physicists, mathematicians, epidemiologists, and computer and social scientists. This review presents the main results and paradigmatic models in infectious disease modeling and generalized social contagion processes.

3,173 citations

Journal ArticleDOI
TL;DR: This review presents the emergent field of temporal networks, and discusses methods for analyzing topological and temporal structure and models for elucidating their relation to the behavior of dynamical systems.
Abstract: A great variety of systems in nature, society and technology -- from the web of sexual contacts to the Internet, from the nervous system to power grids -- can be modeled as graphs of vertices coupled by edges The network structure, describing how the graph is wired, helps us understand, predict and optimize the behavior of dynamical systems In many cases, however, the edges are not continuously active As an example, in networks of communication via email, text messages, or phone calls, edges represent sequences of instantaneous or practically instantaneous contacts In some cases, edges are active for non-negligible periods of time: eg, the proximity patterns of inpatients at hospitals can be represented by a graph where an edge between two individuals is on throughout the time they are at the same ward Like network topology, the temporal structure of edge activations can affect dynamics of systems interacting through the network, from disease contagion on the network of patients to information diffusion over an e-mail network In this review, we present the emergent field of temporal networks, and discuss methods for analyzing topological and temporal structure and models for elucidating their relation to the behavior of dynamical systems In the light of traditional network theory, one can see this framework as moving the information of when things happen from the dynamical system on the network, to the network itself Since fundamental properties, such as the transitivity of edges, do not necessarily hold in temporal networks, many of these methods need to be quite different from those for static networks

2,452 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of physical distancing measures on the progression of the COVID-19 epidemic in Wuhan, China were investigated using synthetic location-specific contact patterns.
Abstract: BACKGROUND: In December, 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus, emerged in Wuhan, China. Since then, the city of Wuhan has taken unprecedented measures in response to the outbreak, including extended school and workplace closures. We aimed to estimate the effects of physical distancing measures on the progression of the COVID-19 epidemic, hoping to provide some insights for the rest of the world. METHODS: To examine how changes in population mixing have affected outbreak progression in Wuhan, we used synthetic location-specific contact patterns in Wuhan and adapted these in the presence of school closures, extended workplace closures, and a reduction in mixing in the general community. Using these matrices and the latest estimates of the epidemiological parameters of the Wuhan outbreak, we simulated the ongoing trajectory of an outbreak in Wuhan using an age-structured susceptible-exposed-infected-removed (SEIR) model for several physical distancing measures. We fitted the latest estimates of epidemic parameters from a transmission model to data on local and internationally exported cases from Wuhan in an age-structured epidemic framework and investigated the age distribution of cases. We also simulated lifting of the control measures by allowing people to return to work in a phased-in way and looked at the effects of returning to work at different stages of the underlying outbreak (at the beginning of March or April). FINDINGS: Our projections show that physical distancing measures were most effective if the staggered return to work was at the beginning of April; this reduced the median number of infections by more than 92% (IQR 66-97) and 24% (13-90) in mid-2020 and end-2020, respectively. There are benefits to sustaining these measures until April in terms of delaying and reducing the height of the peak, median epidemic size at end-2020, and affording health-care systems more time to expand and respond. However, the modelled effects of physical distancing measures vary by the duration of infectiousness and the role school children have in the epidemic. INTERPRETATION: Restrictions on activities in Wuhan, if maintained until April, would probably help to delay the epidemic peak. Our projections suggest that premature and sudden lifting of interventions could lead to an earlier secondary peak, which could be flattened by relaxing the interventions gradually. However, there are limitations to our analysis, including large uncertainties around estimates of R0 and the duration of infectiousness. FUNDING: Bill & Melinda Gates Foundation, National Institute for Health Research, Wellcome Trust, and Health Data Research UK.

1,775 citations

Journal ArticleDOI
TL;DR: In this article, the authors analyze data on the sexual behavior of a random sample of individuals, and find that the cumulative distributions of the number of sexual partners during the twelve months prior to the survey decays as a power law with similar exponents for females and males.
Abstract: Many ``real-world'' networks are clearly defined while most ``social'' networks are to some extent subjective. Indeed, the accuracy of empirically-determined social networks is a question of some concern because individuals may have distinct perceptions of what constitutes a social link. One unambiguous type of connection is sexual contact. Here we analyze data on the sexual behavior of a random sample of individuals, and find that the cumulative distributions of the number of sexual partners during the twelve months prior to the survey decays as a power law with similar exponents $\alpha \approx 2.4$ for females and males. The scale-free nature of the web of human sexual contacts suggests that strategic interventions aimed at preventing the spread of sexually-transmitted diseases may be the most efficient approach.

1,476 citations