scispace - formally typeset
Search or ask a question
Author

Julio Molina

Bio: Julio Molina is an academic researcher from University of California, Los Angeles. The author has contributed to research in topics: Population & Bipolar disorder. The author has an hindex of 7, co-authored 8 publications receiving 1047 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Evidence is observed of a higher level of diversity and lower level of population structure in western South America compared to eastern South America, a relative lack of differentiation between Mesoamerican and Andean populations, and a partial agreement on a local scale between genetic similarity and the linguistic classification of populations.
Abstract: We examined genetic diversity and population structure in the American landmass using 678 autosomal microsatellite markers genotyped in 422 individuals representing 24 Native American populations sampled from North, Central, and South America. These data were analyzed jointly with similar data available in 54 other indigenous populations worldwide, including an additional five Native American groups. The Native American populations have lower genetic diversity and greater differentiation than populations from other continental regions. We observe gradients both of decreasing genetic diversity as a function of geographic distance from the Bering Strait and of decreasing genetic similarity to Siberians—signals of the southward dispersal of human populations from the northwestern tip of the Americas. We also observe evidence of: (1) a higher level of diversity and lower level of population structure in western South America compared to eastern South America, (2) a relative lack of differentiation between Mesoamerican and Andean populations, (3) a scenario in which coastal routes were easier for migrating peoples to traverse in comparison with inland routes, and (4) a partial agreement on a local scale between genetic similarity and the linguistic classification of populations. These findings offer new insights into the process of population dispersal and differentiation during the peopling of the Americas.

542 citations

Journal ArticleDOI
TL;DR: An analysis of admixture in thirteen Mestizo populations from seven countries in Latin America based on data for 678 autosomal and 29 X-chromosome microsatellites found extensive variation in Native American and European ancestry among populations and individuals and evidence that admixture across Latin America has often involved predominantly European men and both Native and African women.
Abstract: The large and diverse population of Latin America is potentially a powerful resource for elucidating the genetic basis of complex traits through admixture mapping. However, no genome-wide characterization of admixture across Latin America has yet been attempted. Here, we report an analysis of admixture in thirteen Mestizo populations (i.e. in regions of mainly European and Native settlement) from seven countries in Latin America based on data for 678 autosomal and 29 X-chromosome microsatellites. We found extensive variation in Native American and European ancestry (and generally low levels of African ancestry) among populations and individuals, and evidence that admixture across Latin America has often involved predominantly European men and both Native and African women. An admixture analysis allowing for Native American population subdivision revealed a differentiation of the Native American ancestry amongst Mestizos. This observation is consistent with the genetic structure of pre-Columbian populations and with admixture having involved Natives from the area where the Mestizo examined are located. Our findings agree with available information on the demographic history of Latin America and have a number of implications for the design of association studies in population from the region.

431 citations

Journal ArticleDOI
TL;DR: A follow-up study with additional markers was undertaken in an expanded set of Colombian and Costa Rican families; this provided a genome-wide significant evidence of linkage of BPI to a candidate region of approximately 10 cM in 5q31-33 (maximum non-parametric linkage score=4.395, P<0.00004).
Abstract: We performed a whole genome microsatellite marker scan in six multiplex families with bipolar (BP) mood disorder ascertained in Antioquia, a historically isolated population from North West Colombia. These families were characterized clinically using the approach employed in independent ongoing studies of BP in the closely related population of the Central Valley of Costa Rica. The most consistent linkage results from parametric and non-parametric analyses of the Colombian scan involved markers on 5q31-33, a region implicated by the previous studies of BP in Costa Rica. Because of these concordant results, a follow-up study with additional markers was undertaken in an expanded set of Colombian and Costa Rican families; this provided a genome-wide significant evidence of linkage of BPI to a candidate region of similar to 10 cM in 5q31-33 (maximum non-parametric linkage score=4.395, P < 0.00004). Interestingly, this region has been implicated in several previous genetic studies of schizophrenia and psychosis, including disease association with variants of the enthoprotin and gamma-aminobutyric acid receptor genes.

43 citations

Journal ArticleDOI
01 Jul 2015-Brain
TL;DR: It is found that total cortical and ventricular volume had the greatest number of significant behavioural associations, and included correlations with measures from multiple cognitive domains, particularly declarative and working memory and executive function.
Abstract: Recent theories regarding the pathophysiology of bipolar disorder suggest contributions of both neurodevelopmental and neurodegenerative processes. While structural neuroimaging studies indicate disease-associated neuroanatomical alterations, the behavioural correlates of these alterations have not been well characterized. Here, we investigated multi-generational families genetically enriched for bipolar disorder to: (i) characterize neurobehavioural correlates of neuroanatomical measures implicated in the pathophysiology of bipolar disorder; (ii) identify brain-behaviour associations that differ between diagnostic groups; (iii) identify neurocognitive traits that show evidence of accelerated ageing specifically in subjects with bipolar disorder; and (iv) identify brain-behaviour correlations that differ across the age span. Structural neuroimages and multi-dimensional assessments of temperament and neurocognition were acquired from 527 (153 bipolar disorder and 374 non-bipolar disorder) adults aged 18-87 years in 26 families with heavy genetic loading for bipolar disorder. We used linear regression models to identify significant brain-behaviour associations and test whether brain-behaviour relationships differed: (i) between diagnostic groups; and (ii) as a function of age. We found that total cortical and ventricular volume had the greatest number of significant behavioural associations, and included correlations with measures from multiple cognitive domains, particularly declarative and working memory and executive function. Cortical thickness measures, in contrast, showed more specific associations with declarative memory, letter fluency and processing speed tasks. While the majority of brain-behaviour relationships were similar across diagnostic groups, increased cortical thickness in ventrolateral prefrontal and parietal cortical regions was associated with better declarative memory only in bipolar disorder subjects, and not in non-bipolar disorder family members. Additionally, while age had a relatively strong impact on all neurocognitive traits, the effects of age on cognition did not differ between diagnostic groups. Most brain-behaviour associations were also similar across the age range, with the exception of cortical and ventricular volume and lingual gyrus thickness, which showed weak correlations with verbal fluency and inhibitory control at younger ages that increased in magnitude in older subjects, regardless of diagnosis. Findings indicate that neuroanatomical traits potentially impacted by bipolar disorder are significantly associated with multiple neurobehavioural domains. Structure-function relationships are generally preserved across diagnostic groups, with the notable exception of ventrolateral prefrontal and parietal association cortex, volumetric increases in which may be associated with cognitive resilience specifically in individuals with bipolar disorder. Although age impacted all neurobehavioural traits, we did not find any evidence of accelerated cognitive decline specific to bipolar disorder subjects. Regardless of diagnosis, greater global brain volume may represent a protective factor for the effects of ageing on executive functioning.

34 citations

Journal ArticleDOI
TL;DR: Analysis of the data was hampered by the size and complexity of the pedigree, which prohibited using exact multipoint methods on the entire kindred, and the difficulties of analyzing genome wide SNP data for complex disorders in large, potentially informative, kindreds are discussed.
Abstract: We have ascertained in the Central Valley of Costa Rica a new kindred (CR201) segregating for severe bipolar disorder (BP-I). The family was identified by tracing genealogical connections among eight persons initially independently ascertained for a genome wide association study of BP-I. For the genome screen in CR201, we trimmed the family down to 168 persons (82 of whom are genotyped), containing 25 individuals with a best-estimate diagnosis of BP-I. A total of 4,690 SNP markers were genotyped. Analysis of the data was hampered by the size and complexity of the pedigree, which prohibited using exact multipoint methods on the entire kindred. Two-point parametric linkage analysis, using a conservative model of transmission, produced a maximum LOD score of 2.78 on chromosome 6, and a total of 39 loci with LOD scores >1.0. Multipoint parametric and non-parametric linkage analysis was performed separately on four sections of CR201, and interesting (nominal P-value from either analysis <0.01), although not statistically significant, regions were highlighted on chromosomes 1, 2, 3, 12, 16, 19, and 22, in at least one section of the pedigree, or when considering all sections together. The difficulties of analyzing genome wide SNP data for complex disorders in large, potentially informative, kindreds are discussed.

22 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Discriminant Analysis of Principal Components (DAPC) is introduced, a multivariate method designed to identify and describe clusters of genetically related individuals that performs generally better than STRUCTURE at characterizing population subdivision.
Abstract: The dramatic progress in sequencing technologies offers unprecedented prospects for deciphering the organization of natural populations in space and time. However, the size of the datasets generated also poses some daunting challenges. In particular, Bayesian clustering algorithms based on pre-defined population genetics models such as the STRUCTURE or BAPS software may not be able to cope with this unprecedented amount of data. Thus, there is a need for less computer-intensive approaches. Multivariate analyses seem particularly appealing as they are specifically devoted to extracting information from large datasets. Unfortunately, currently available multivariate methods still lack some essential features needed to study the genetic structure of natural populations. We introduce the Discriminant Analysis of Principal Components (DAPC), a multivariate method designed to identify and describe clusters of genetically related individuals. When group priors are lacking, DAPC uses sequential K-means and model selection to infer genetic clusters. Our approach allows extracting rich information from genetic data, providing assignment of individuals to groups, a visual assessment of between-population differentiation, and contribution of individual alleles to population structuring. We evaluate the performance of our method using simulated data, which were also analyzed using STRUCTURE as a benchmark. Additionally, we illustrate the method by analyzing microsatellite polymorphism in worldwide human populations and hemagglutinin gene sequence variation in seasonal influenza. Analysis of simulated data revealed that our approach performs generally better than STRUCTURE at characterizing population subdivision. The tools implemented in DAPC for the identification of clusters and graphical representation of between-group structures allow to unravel complex population structures. Our approach is also faster than Bayesian clustering algorithms by several orders of magnitude, and may be applicable to a wider range of datasets.

3,770 citations

Journal ArticleDOI
TL;DR: Clumpak, available at http://clumpak.tau.ac.il, simplifies the use of model-based analyses of population structure in population genetics and molecular ecology by automating the postprocessing of results of model‐based population structure analyses.
Abstract: The identification of the genetic structure of populations from multilocus genotype data has become a central component of modern population-genetic data analysis. Application of model-based clustering programs often entails a number of steps, in which the user considers different modelling assumptions, compares results across different predetermined values of the number of assumed clusters (a parameter typically denoted K), examines multiple independent runs for each fixed value of K, and distinguishes among runs belonging to substantially distinct clustering solutions. Here, we present CLUMPAK (Cluster Markov Packager Across K), a method that automates the postprocessing of results of model-based population structure analyses. For analysing multiple independent runs at a single K value, CLUMPAK identifies sets of highly similar runs, separating distinct groups of runs that represent distinct modes in the space of possible solutions. This procedure, which generates a consensus solution for each distinct mode, is performed by the use of a Markov clustering algorithm that relies on a similarity matrix between replicate runs, as computed by the software CLUMPP. Next, CLUMPAK identifies an optimal alignment of inferred clusters across different values of K, extending a similar approach implemented for a fixed K in CLUMPP and simplifying the comparison of clustering results across different K values. CLUMPAK incorporates additional features, such as implementations of methods for choosing K and comparing solutions obtained by different programs, models, or data subsets. CLUMPAK, available at http://clumpak.tau.ac.il, simplifies the use of model-based analyses of population structure in population genetics and molecular ecology.

2,252 citations

Journal ArticleDOI
01 Nov 2012-Genetics
TL;DR: A suite of methods for learning about population mixtures are presented, implemented in a software package called ADMIXTOOLS, that support formal tests for whether mixture occurred and make it possible to infer proportions and dates of mixture.
Abstract: Population mixture is an important process in biology. We present a suite of methods for learning about population mixtures, implemented in a software package called ADMIXTOOLS, that support formal tests for whether mixture occurred and make it possible to infer proportions and dates of mixture. We also describe the development of a new single nucleotide polymorphism (SNP) array consisting of 629,433 sites with clearly documented ascertainment that was specifically designed for population genetic analyses and that we genotyped in 934 individuals from 53 diverse populations. To illustrate the methods, we give a number of examples that provide new insights about the history of human admixture. The most striking finding is a clear signal of admixture into northern Europe, with one ancestral population related to present-day Basques and Sardinians and the other related to present-day populations of northeast Asia and the Americas. This likely reflects a history of admixture between Neolithic migrants and the indigenous Mesolithic population of Europe, consistent with recent analyses of ancient bones from Sweden and the sequencing of the genome of the Tyrolean "Iceman."

1,877 citations

Journal ArticleDOI
22 May 2009-Science
TL;DR: A detailed genetic analysis of most major groups of African populations is provided, suggesting that Africans represent 14 ancestral populations that correlate with self-described ethnicity and shared cultural and/or linguistic properties.
Abstract: Africa is the source of all modern humans, but characterization of genetic variation and of relationships among populations across the continent has been enigmatic. We studied 121 African populations, four African American populations, and 60 non-African populations for patterns of variation at 1327 nuclear microsatellite and insertion/deletion markers. We identified 14 ancestral population clusters in Africa that correlate with self-described ethnicity and shared cultural and/or linguistic properties. We observed high levels of mixed ancestry in most populations, reflecting historical migration events across the continent. Our data also provide evidence for shared ancestry among geographically diverse hunter-gatherer populations (Khoesan speakers and Pygmies). The ancestry of African Americans is predominantly from Niger-Kordofanian (approximately 71%), European (approximately 13%), and other African (approximately 8%) populations, although admixture levels varied considerably among individuals. This study helps tease apart the complex evolutionary history of Africans and African Americans, aiding both anthropological and genetic epidemiologic studies.

1,376 citations

Journal ArticleDOI
TL;DR: The level of genetic diversity within a society is found to have a hump-shaped effect on development outcomes in both the pre-colonial and the modern era, reflecting the trade-off between the beneficial and the detrimental effects of diversity on productivity.
Abstract: This research advances and empirically establishes the hypothesis that, in the course of the prehistoric exodus of Homo sapiens out of Africa, variation in migratory distance to various settlements across the globe affected genetic diversity and has had a persistent humpshaped effect on comparative economic development, reflecting the trade-off between the beneficial and the detrimental effects of diversity on productivity. While the low diversity of Native American populations and the high diversity of African populations have been detrimental for the development of these regions, the intermediate levels of diversity associated with European and Asian populations have been conducive for development. (JEL N10, N30, N50, O10, O50, Z10) Prevailing hypotheses of comparative economic development highlight various determinants of the remarkable inequality in income per capita across the globe. The significance of geographical, institutional, and cultural factors, human capital, ethnolinguistic fractionalization, colonialism, and globalization has been at the heart of a debate concerning the genesis of the astounding transformation in the pattern of comparative development over the past few centuries. While early research focused on the proximate forces that contributed to the divergence in living

870 citations