scispace - formally typeset
Search or ask a question
Author

Julio Molina

Bio: Julio Molina is an academic researcher from University of Costa Rica. The author has contributed to research in topics: Population & Linkage disequilibrium. The author has an hindex of 16, co-authored 22 publications receiving 2773 citations.

Papers
More filters
Journal ArticleDOI
Iosif Lazaridis1, Iosif Lazaridis2, Nick Patterson1, Alissa Mittnik3, Gabriel Renaud4, Swapan Mallick2, Swapan Mallick1, Karola Kirsanow5, Peter H. Sudmant6, Joshua G. Schraiber6, Joshua G. Schraiber7, Sergi Castellano4, Mark Lipson8, Bonnie Berger1, Bonnie Berger8, Christos Economou9, Ruth Bollongino5, Qiaomei Fu4, Kirsten I. Bos3, Susanne Nordenfelt2, Susanne Nordenfelt1, Heng Li2, Heng Li1, Cesare de Filippo4, Kay Prüfer4, Susanna Sawyer4, Cosimo Posth3, Wolfgang Haak10, Fredrik Hallgren11, Elin Fornander11, Nadin Rohland1, Nadin Rohland2, Dominique Delsate12, Michael Francken3, Jean-Michel Guinet12, Joachim Wahl, George Ayodo, Hamza A. Babiker13, Hamza A. Babiker14, Graciela Bailliet, Elena Balanovska, Oleg Balanovsky, Ramiro Barrantes15, Gabriel Bedoya16, Haim Ben-Ami17, Judit Bene18, Fouad Berrada19, Claudio M. Bravi, Francesca Brisighelli20, George B.J. Busby21, Francesco Calì, Mikhail Churnosov22, David E. C. Cole23, Daniel Corach24, Larissa Damba, George van Driem25, Stanislav Dryomov26, Jean-Michel Dugoujon27, Sardana A. Fedorova28, Irene Gallego Romero29, Marina Gubina, Michael F. Hammer30, Brenna M. Henn31, Tor Hervig32, Ugur Hodoglugil33, Aashish R. Jha29, Sena Karachanak-Yankova34, Rita Khusainova35, Elza Khusnutdinova35, Rick A. Kittles30, Toomas Kivisild36, William Klitz7, Vaidutis Kučinskas37, Alena Kushniarevich38, Leila Laredj39, Sergey Litvinov38, Theologos Loukidis40, Theologos Loukidis41, Robert W. Mahley42, Béla Melegh18, Ene Metspalu43, Julio Molina, Joanna L. Mountain, Klemetti Näkkäläjärvi44, Desislava Nesheva34, Thomas B. Nyambo45, Ludmila P. Osipova, Jüri Parik43, Fedor Platonov28, Olga L. Posukh, Valentino Romano46, Francisco Rothhammer47, Francisco Rothhammer48, Igor Rudan14, Ruslan Ruizbakiev49, Hovhannes Sahakyan38, Hovhannes Sahakyan50, Antti Sajantila51, Antonio Salas52, Elena B. Starikovskaya26, Ayele Tarekegn, Draga Toncheva34, Shahlo Turdikulova49, Ingrida Uktveryte37, Olga Utevska53, René Vasquez54, Mercedes Villena54, Mikhail Voevoda55, Cheryl A. Winkler56, Levon Yepiskoposyan50, Pierre Zalloua2, Pierre Zalloua57, Tatijana Zemunik58, Alan Cooper10, Cristian Capelli21, Mark G. Thomas40, Andres Ruiz-Linares40, Sarah A. Tishkoff59, Lalji Singh60, Kumarasamy Thangaraj61, Richard Villems62, Richard Villems43, Richard Villems38, David Comas63, Rem I. Sukernik26, Mait Metspalu38, Matthias Meyer4, Evan E. Eichler6, Joachim Burger5, Montgomery Slatkin7, Svante Pääbo4, Janet Kelso4, David Reich2, David Reich1, David Reich64, Johannes Krause3, Johannes Krause4 
Broad Institute1, Harvard University2, University of Tübingen3, Max Planck Society4, University of Mainz5, University of Washington6, University of California, Berkeley7, Massachusetts Institute of Technology8, Stockholm University9, University of Adelaide10, The Heritage Foundation11, National Museum of Natural History12, Sultan Qaboos University13, University of Edinburgh14, University of Costa Rica15, University of Antioquia16, Rambam Health Care Campus17, University of Pécs18, Al Akhawayn University19, Catholic University of the Sacred Heart20, University of Oxford21, Belgorod State University22, University of Toronto23, University of Buenos Aires24, University of Bern25, Russian Academy of Sciences26, Paul Sabatier University27, North-Eastern Federal University28, University of Chicago29, University of Arizona30, Stony Brook University31, University of Bergen32, Illumina33, Sofia Medical University34, Bashkir State University35, University of Cambridge36, Vilnius University37, Estonian Biocentre38, University of Strasbourg39, University College London40, Amgen41, Gladstone Institutes42, University of Tartu43, University of Oulu44, Muhimbili University of Health and Allied Sciences45, University of Palermo46, University of Chile47, University of Tarapacá48, Academy of Sciences of Uzbekistan49, Armenian National Academy of Sciences50, University of North Texas51, University of Santiago de Compostela52, University of Kharkiv53, Higher University of San Andrés54, Novosibirsk State University55, Leidos56, Lebanese American University57, University of Split58, University of Pennsylvania59, Banaras Hindu University60, Centre for Cellular and Molecular Biology61, Estonian Academy of Sciences62, Pompeu Fabra University63, Howard Hughes Medical Institute64
18 Sep 2014-Nature
TL;DR: It is shown that most present-day Europeans derive from at least three highly differentiated populations: west European hunter-gatherers, who contributed ancestry to all Europeans but not to Near Easterners; ancient north Eurasians related to Upper Palaeolithic Siberians; and early European farmers, who were mainly of Near Eastern origin but also harboured west Europeanhunter-gatherer related ancestry.
Abstract: We sequenced the genomes of a ∼7,000-year-old farmer from Germany and eight ∼8,000-year-old hunter-gatherers from Luxembourg and Sweden. We analysed these and other ancient genomes with 2,345 contemporary humans to show that most present-day Europeans derive from at least three highly differentiated populations: west European hunter-gatherers, who contributed ancestry to all Europeans but not to Near Easterners; ancient north Eurasians related to Upper Palaeolithic Siberians, who contributed to both Europeans and Near Easterners; and early European farmers, who were mainly of Near Eastern origin but also harboured west European hunter-gatherer related ancestry. We model these populations' deep relationships and show that early European farmers had ∼44% ancestry from a 'basal Eurasian' population that split before the diversification of other non-African lineages.

1,077 citations

Journal ArticleDOI
David Reich1, David Reich2, Nick Patterson1, Desmond Campbell3, Desmond Campbell4, Arti Tandon1, Arti Tandon2, Stéphane Mazières4, Stéphane Mazières5, Nicolas Ray6, María Victoria Parra4, María Victoria Parra7, Winston Rojas4, Winston Rojas7, Constanza Duque7, Constanza Duque4, Natalia Mesa4, Natalia Mesa7, Luis F. García7, Omar Triana7, Silvia Blair7, Amanda Maestre7, Juan Carlos Dib, Claudio M. Bravi4, Claudio M. Bravi8, Graciela Bailliet8, Daniel Corach9, Tábita Hünemeier4, Tábita Hünemeier10, Maria Cátira Bortolini10, Francisco M. Salzano10, Maria Luiza Petzl-Erler11, Victor Acuña-Alonzo, Carlos A. Aguilar-Salinas, Samuel Canizales-Quinteros12, Teresa Tusié-Luna12, Laura Riba12, Maricela Rodríguez-Cruz13, Mardia López-Alarcón13, Ramón Mauricio Coral-Vázquez14, Thelma Canto-Cetina, Irma Silva-Zolezzi15, Juan Carlos Fernández-López, Alejandra V. Contreras, Gerardo Jimenez-Sanchez15, María José Gómez-Vázquez16, Julio Molina, Angel Carracedo17, Antonio Salas17, Carla Gallo18, Giovanni Poletti18, David B. Witonsky19, Gorka Alkorta-Aranburu19, Rem I. Sukernik20, Ludmila P. Osipova20, Sardana A. Fedorova, René Vasquez, Mercedes Villena, Claudia Moreau21, Ramiro Barrantes22, David L. Pauls2, Laurent Excoffier23, Laurent Excoffier24, Gabriel Bedoya7, Francisco Rothhammer25, Jean-Michel Dugoujon26, Georges Larrouy26, William Klitz27, Damian Labuda21, Judith R. Kidd28, Kenneth K. Kidd28, Anna Di Rienzo19, Nelson B. Freimer29, Alkes L. Price2, Alkes L. Price1, Andres Ruiz-Linares4 
16 Aug 2012-Nature
TL;DR: It is shown that the initial peopling followed a southward expansion facilitated by the coast, with sequential population splits and little gene flow after divergence, especially in South America.
Abstract: The peopling of the Americas has been the subject of extensive genetic, archaeological and linguistic research; however, central questions remain unresolved. One contentious issue is whether the settlement occurred by means of a single migration or multiple streams of migration from Siberia. The pattern of dispersals within the Americas is also poorly understood. To address these questions at a higher resolution than was previously possible, we assembled data from 52 Native American and 17 Siberian groups genotyped at 364,470 single nucleotide polymorphisms. Here we show that Native Americans descend from at least three streams of Asian gene flow. Most descend entirely from a single ancestral population that we call 'First American'. However, speakers of Eskimo-Aleut languages from the Arctic inherit almost half their ancestry from a second stream of Asian gene flow, and the Na-Dene-speaking Chipewyan from Canada inherit roughly one-tenth of their ancestry from a third stream. We show that the initial peopling followed a southward expansion facilitated by the coast, with sequential population splits and little gene flow after divergence, especially in South America. A major exception is in Chibchan speakers on both sides of the Panama isthmus, who have ancestry from both North and South America.

696 citations

Iosif Lazaridis1, Iosif Lazaridis2, Nick Patterson1, Alissa Mittnik3, Gabriel Renaud4, Swapan Mallick1, Swapan Mallick2, Karola Kirsanow5, Peter H. Sudmant6, Joshua G. Schraiber7, Joshua G. Schraiber6, Sergi Castellano4, Mark Lipson8, Bonnie Berger8, Bonnie Berger1, Christos Economou9, Ruth Bollongino5, Qiaomei Fu4, Kirsten I. Bos3, Susanne Nordenfelt1, Susanne Nordenfelt2, Heng Li1, Heng Li2, Cesare de Filippo4, Kay Prüfer4, Susanna Sawyer4, Cosimo Posth3, Wolfgang Haak10, Fredrik Hallgren11, Elin Fornander11, Nadin Rohland1, Nadin Rohland2, Dominique Delsate12, Michael Francken3, Jean-Michel Guinet12, Joachim Wahl, George Ayodo, Hamza A. Babiker13, Hamza A. Babiker14, Graciela Bailliet, Elena Balanovska, Oleg Balanovsky, Ramiro Barrantes15, Gabriel Bedoya16, Haim Ben-Ami17, Judit Bene18, Fouad Berrada19, Claudio M. Bravi, Francesca Brisighelli20, George B.J. Busby21, Francesco Calì, Mikhail Churnosov22, David E. C. Cole23, Daniel Corach24, Larissa Damba, George van Driem25, Stanislav Dryomov26, Jean-Michel Dugoujon27, Sardana A. Fedorova28, Irene Gallego Romero29, Marina Gubina, Michael F. Hammer30, Brenna M. Henn31, Tor Hervig32, Ugur Hodoglugil33, Aashish R. Jha29, Sena Karachanak-Yankova34, Rita Khusainova35, Elza Khusnutdinova35, Rick A. Kittles30, Toomas Kivisild36, William Klitz7, Vaidutis Kučinskas37, Alena Kushniarevich38, Leila Laredj39, Sergey Litvinov38, Theologos Loukidis40, Theologos Loukidis41, Robert W. Mahley42, Béla Melegh18, Ene Metspalu43, Julio Molina, Joanna L. Mountain, Klemetti Näkkäläjärvi44, Desislava Nesheva34, Thomas B. Nyambo45, Ludmila P. Osipova, Jüri Parik43, Fedor Platonov28, Olga L. Posukh, Valentino Romano46, Francisco Rothhammer47, Francisco Rothhammer48, Igor Rudan14, Ruslan Ruizbakiev49, Hovhannes Sahakyan38, Hovhannes Sahakyan50, Antti Sajantila51, Antonio Salas52, Elena B. Starikovskaya26, Ayele Tarekegn, Draga Toncheva34, Shahlo Turdikulova49, Ingrida Uktveryte37, Olga Utevska53, René Vasquez54, Mercedes Villena54, Mikhail Voevoda55, Cheryl A. Winkler56, Levon Yepiskoposyan50, Pierre Zalloua57, Pierre Zalloua2, Tatijana Zemunik58, Alan Cooper10, Cristian Capelli21, Mark G. Thomas40, Andres Ruiz-Linares40, Sarah A. Tishkoff59, Lalji Singh60, Kumarasamy Thangaraj61, Richard Villems62, Richard Villems38, Richard Villems43, David Comas63, Rem I. Sukernik26, Mait Metspalu38, Matthias Meyer4, Evan E. Eichler6, Joachim Burger5, Montgomery Slatkin7, Svante Pääbo4, Janet Kelso4, David Reich64, David Reich2, David Reich1, Johannes Krause3, Johannes Krause4 
Broad Institute1, Harvard University2, University of Tübingen3, Max Planck Society4, University of Mainz5, University of Washington6, University of California, Berkeley7, Massachusetts Institute of Technology8, Stockholm University9, University of Adelaide10, The Heritage Foundation11, National Museum of Natural History12, Sultan Qaboos University13, University of Edinburgh14, University of Costa Rica15, University of Antioquia16, Rambam Health Care Campus17, University of Pécs18, Al Akhawayn University19, Catholic University of the Sacred Heart20, University of Oxford21, Belgorod State University22, University of Toronto23, University of Buenos Aires24, University of Bern25, Russian Academy of Sciences26, Paul Sabatier University27, North-Eastern Federal University28, University of Chicago29, University of Arizona30, Stony Brook University31, University of Bergen32, Illumina33, Sofia Medical University34, Bashkir State University35, University of Cambridge36, Vilnius University37, Estonian Biocentre38, University of Strasbourg39, University College London40, Amgen41, Gladstone Institutes42, University of Tartu43, University of Oulu44, Muhimbili University of Health and Allied Sciences45, University of Palermo46, University of Tarapacá47, University of Chile48, Academy of Sciences of Uzbekistan49, Armenian National Academy of Sciences50, University of North Texas51, University of Santiago de Compostela52, University of Kharkiv53, Higher University of San Andrés54, Novosibirsk State University55, Leidos56, Lebanese American University57, University of Split58, University of Pennsylvania59, Banaras Hindu University60, Centre for Cellular and Molecular Biology61, Estonian Academy of Sciences62, Pompeu Fabra University63, Howard Hughes Medical Institute64
01 Sep 2014
TL;DR: The authors showed that most present-day Europeans derive from at least three highly differentiated populations: west European hunter-gatherers, ancient north Eurasians related to Upper Palaeolithic Siberians, who contributed to both Europeans and Near Easterners; and early European farmers, who were mainly of Near Eastern origin but also harboured west European hunters-gatherer related ancestry.
Abstract: We sequenced the genomes of a ∼7,000-year-old farmer from Germany and eight ∼8,000-year-old hunter-gatherers from Luxembourg and Sweden. We analysed these and other ancient genomes with 2,345 contemporary humans to show that most present-day Europeans derive from at least three highly differentiated populations: west European hunter-gatherers, who contributed ancestry to all Europeans but not to Near Easterners; ancient north Eurasians related to Upper Palaeolithic Siberians, who contributed to both Europeans and Near Easterners; and early European farmers, who were mainly of Near Eastern origin but also harboured west European hunter-gatherer related ancestry. We model these populations' deep relationships and show that early European farmers had ∼44% ancestry from a 'basal Eurasian' population that split before the diversification of other non-African lineages.

442 citations

Journal ArticleDOI
TL;DR: The genetic similarity of the populations from Antioquia and the CVCR together with differences in LD between them should be exploitable for the identification and fine mapping of shared disease-related gene variants.
Abstract: We report a comparative genetic characterization of two population isolates with parallel demographic histories: the Central Valley of Costa Rica (CVCR) and Antioquia (in northwest Colombia). The analysis of mtDNA, Y-chromosome and autosomal polymorphisms shows that Antioquia and the CVCR are genetically very similar, indicating that closely related parental populations founded these two isolates. In both populations, the male ancestry is predominantly European, whereas the female ancestry is mostly Amerind. In agreement with their isolation, the Amerindian mtDNA diversity of Antioquia and the CVCR is typical of ethnically-defined native populations and is markedly lower than in other Latin American populations. A comparison of linkage disequilibrium (LD) at 18 marker pairs in Antioquia and the CVCR shows that markers in LD in both populations are located at short genetic distances (<~1 cM), whereas markers separated by greater distances are in LD only in the CVCR. This difference probably reflects stochastic variation of LD at the limited number of genome regions compared. The genetic similarity of the populations from Antioquia and the CVCR together with differences in LD between them should be exploitable for the identification and fine mapping of shared disease-related gene variants.

178 citations

Posted ContentDOI
Iosif Lazaridis1, Nick Patterson2, Alissa Mittnik3, Gabriel Renaud4, Swapan Mallick1, Karola Kirsanow5, Peter H. Sudmant6, Joshua G. Schraiber7, Sergi Castellano4, Mark Lipson8, Bonnie Berger8, Christos Economou9, Ruth Bollongino5, Qiaomei Fu4, Kirsten I. Bos3, Susanne Nordenfelt1, Heng Li2, Cesare de Filippo4, Kay Prüfer4, Susanna Sawyer4, Cosimo Posth3, Wolfgang Haak10, Fredrik Hallgren11, Elin Fornander11, Nadin Rohland1, Dominique Delsate12, Michael Francken3, Jean-Michel Guinet13, Joachim Wahl, George Ayodo, Hamza A. Babiker14, Graciela Bailliet15, Elena Balanovska, Oleg Balanovsky, Ramiro Barrantes16, Gabriel Bedoya17, Haim Ben-Ami18, Judit Bene19, Fouad Berrada20, Claudio M. Bravi15, Francesca Brisighelli21, George B.J. Busby22, Francesco Calì, Mikhail Churnosov23, David E. C. Cole24, Daniel Corach25, Larissa Damba26, George van Driem27, Stanislav Dryomov26, Jean-Michel Dugoujon28, Sardana A. Fedorova29, Irene Gallego Romero30, Marina Gubina31, Michael F. Hammer32, Brenna M. Henn33, Tor Hervig34, Ugur Hodoglugil35, Aashish R. Jha30, Sena Karachanak-Yankova36, Rita Khusainova31, Elza Khusnutdinova31, Rick A. Kittles37, Toomas Kivisild38, William Klitz7, Vaidutis Kučinskas39, Alena Kushniarevich40, Leila Laredj41, Sergey Litvinov31, Theologos Loukidis42, Robert W. Mahley43, Béla Melegh19, Ene Metspalu44, Julio Molina, Joanna L. Mountain, Klemetti Näkkäläjärvi45, Desislava Nesheva36, Thomas B. Nyambo46, Ludmila P. Osipova31, Jüri Parik44, Fedor Platonov29, Olga L. Posukh31, Valentino Romano47, Francisco Rothhammer48, Igor Rudan14, Ruslan Ruizbakiev49, Hovhannes Sahakyan40, Antti Sajantila50, Antonio Salas51, Elena B. Starikovskaya31, Ayele Tarekegn, Draga Toncheva36, Shahlo Turdikulova49, Ingrida Uktveryte39, Olga Utevska52, René Vasquez53, Mercedes Villena53, Mikhail Voevoda31, Cheryl A. Winkler54, Levon Yepiskoposyan55, Pierre Zalloua56, Tatijana Zemunik57, Alan Cooper10, Cristian Capelli22, Mark G. Thomas58, Andres Ruiz-Linares58, Sarah A. Tishkoff59, Lalji Singh60, Kumarasamy Thangaraj60, Richard Villems40, David Comas61, Rem I. Sukernik31, Mait Metspalu40, Matthias Meyer4, Evan E. Eichler6, Joachim Burger5, Montgomery Slatkin7, Svante Pääbo4, Janet Kelso4, David Reich1, Johannes Krause3 
Harvard University1, Broad Institute2, University of Tübingen3, Max Planck Society4, University of Mainz5, University of Washington6, University of California, Berkeley7, Massachusetts Institute of Technology8, Stockholm University9, University of Adelaide10, The Heritage Foundation11, National Museum of Natural History12, American Museum of Natural History13, University of Edinburgh14, National Scientific and Technical Research Council15, University of Costa Rica16, University of Antioquia17, Rambam Health Care Campus18, University of Pécs19, Al Akhawayn University20, Catholic University of the Sacred Heart21, University of Oxford22, Belgorod State University23, University of Toronto24, University of Buenos Aires25, Russian Academy26, University of Bern27, Paul Sabatier University28, North-Eastern Federal University29, University of Chicago30, Russian Academy of Sciences31, University of Arizona32, Stony Brook University33, University of Bergen34, Illumina35, Sofia Medical University36, University of Illinois at Chicago37, University of Cambridge38, Vilnius University39, Estonian Biocentre40, University of Strasbourg41, Amgen42, Gladstone Institutes43, University of Tartu44, University of Oulu45, Muhimbili University of Health and Allied Sciences46, University of Palermo47, University of Tarapacá48, Academy of Sciences of Uzbekistan49, University of Helsinki50, University of Santiago de Compostela51, University of Kharkiv52, Higher University of San Andrés53, Leidos54, Armenian National Academy of Sciences55, Lebanese American University56, University of Split57, University College London58, University of Pennsylvania59, Centre for Cellular and Molecular Biology60, Pompeu Fabra University61
02 Apr 2014-bioRxiv
TL;DR: It is shown that the great majority of present-day Europeans derive from at least three highly differentiated populations: West European Hunter-Gatherers (WHG), who contributed ancestry to all Europeans but not to Near Easterners; Ancient North Eurasians (ANE); and Early European Farmers (EEF), who were mainly of Near Eastern origin but also harbored WHG-related ancestry.
Abstract: We sequenced genomes from a ~7,000 year old early farmer from Stuttgart in Germany, an ~8,000 year old hunter-gatherer from Luxembourg, and seven ~8,000 year old hunter-gatherers from southern Sweden. We analyzed these data together with other ancient genomes and 2,345 contemporary humans to show that the great majority of present-day Europeans derive from at least three highly differentiated populations: West European Hunter-Gatherers (WHG), who contributed ancestry to all Europeans but not to Near Easterners; Ancient North Eurasians (ANE), who were most closely related to Upper Paleolithic Siberians and contributed to both Europeans and Near Easterners; and Early European Farmers (EEF), who were mainly of Near Eastern origin but also harbored WHG-related ancestry. We model these populations' deep relationships and show that EEF had ~44% ancestry from a "Basal Eurasian" lineage that split prior to the diversification of all other non-African lineages.

134 citations


Cited by
More filters
29 Jan 2015
TL;DR: The current state of the genetic dissection of complex traits is summarized in this paper, which describes the methods, limitations, and recent applications to biological problems, including linkage analysis, allele-sharing methods, association studies, and polygenic analysis of experimental crosses.
Abstract: Medical genetics was revolutionized during the 1980s by the application of genetic mapping to locate the genes responsible for simple Mendelian diseases. Most diseases and traits, however, do not follow simple inheritance patterns. Geneticists have thus begun taking up the even greater challenge of the genetic dissection of complex traits. Four major approaches have been developed: linkage analysis, allele-sharing methods, association studies, and polygenic analysis of experimental crosses. This article synthesizes the current state of the genetic dissection of complex traits—describing the methods, limitations, and recent applications to biological problems.

1,805 citations

Journal ArticleDOI
TL;DR: In this paper, the spectral decomposition (SpD) of matrices of pairwise LD between SNPs is used for multiple testing of SNPs in linkage disequilibrium (LD) with each other.
Abstract: In this report, we describe a simple correction for multiple testing of single-nucleotide polymorphisms (SNPs) in linkage disequilibrium (LD) with each other, on the basis of the spectral decomposition (SpD) of matrices of pairwise LD between SNPs. This method provides a useful alternative to more computationally intensive permutation tests. A user-friendly interface (SNPSpD) for performing this correction is available online (http://genepi.qimr.edu.au/general/daleN/SNPSpD/). Additionally, output from SNPSpD includes eigenvalues, principal-component coefficients, and factor “loadings” after varimax rotation, enabling the selection of a subset of SNPs that optimize the information in a genomic region.

1,605 citations

01 Jan 2004
TL;DR: A simple correction for multiple testing of single-nucleotide polymorphisms (SNPs) in linkage disequilibrium (LD) with each other, on the basis of the spectral decomposition (SpD) of matrices of pairwise LD between SNPs is described.
Abstract: In this report, we describe a simple correction for multiple testing of single-nucleotide polymorphisms (SNPs) in linkage disequilibrium (LD) with each other, on the basis of the spectral decomposition (SpD) of matrices of pairwise LD between SNPs. This method provides a useful alternative to more computationally intensive permutation tests. Additionally, output from SNPSpD includes eigenvalues, principal-component coefficients, and factor "loadings" after varimax rotation, enabling the selection of a subset of SNPs that optimize the information in a genomic region.

1,480 citations

Journal ArticleDOI
TL;DR: Some of the key events in the peopling of the world in the light of the findings of work on ancient DNA are reviewed.
Abstract: Ancient DNA research is revealing a human history far more complex than that inferred from parsimonious models based on modern DNA. Here, we review some of the key events in the peopling of the world in the light of the findings of work on ancient DNA.

1,365 citations

Journal ArticleDOI
11 Jun 2015-Nature
TL;DR: In this paper, the authors generated genome-wide data from 69 Europeans who lived between 8,000-3,000 years ago by enriching ancient DNA libraries for a target set of almost 400,000 polymorphisms.
Abstract: We generated genome-wide data from 69 Europeans who lived between 8,000-3,000 years ago by enriching ancient DNA libraries for a target set of almost 400,000 polymorphisms. Enrichment of these positions decreases the sequencing required for genome-wide ancient DNA analysis by a median of around 250-fold, allowing us to study an order of magnitude more individuals than previous studies and to obtain new insights about the past. We show that the populations of Western and Far Eastern Europe followed opposite trajectories between 8,000-5,000 years ago. At the beginning of the Neolithic period in Europe, ∼8,000-7,000 years ago, closely related groups of early farmers appeared in Germany, Hungary and Spain, different from indigenous hunter-gatherers, whereas Russia was inhabited by a distinctive population of hunter-gatherers with high affinity to a ∼24,000-year-old Siberian. By ∼6,000-5,000 years ago, farmers throughout much of Europe had more hunter-gatherer ancestry than their predecessors, but in Russia, the Yamnaya steppe herders of this time were descended not only from the preceding eastern European hunter-gatherers, but also from a population of Near Eastern ancestry. Western and Eastern Europe came into contact ∼4,500 years ago, as the Late Neolithic Corded Ware people from Germany traced ∼75% of their ancestry to the Yamnaya, documenting a massive migration into the heartland of Europe from its eastern periphery. This steppe ancestry persisted in all sampled central Europeans until at least ∼3,000 years ago, and is ubiquitous in present-day Europeans. These results provide support for a steppe origin of at least some of the Indo-European languages of Europe.

1,332 citations