scispace - formally typeset
Search or ask a question
Author

Jullyana Cristina Magalhães Silva Moura

Bio: Jullyana Cristina Magalhães Silva Moura is an academic researcher from State University of Campinas. The author has contributed to research in topics: Lignin & Bagasse. The author has an hindex of 5, co-authored 5 publications receiving 742 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a review focuses on recent literature reporting on the main types of abiotic and biotic stresses that alter the biosynthesis of lignin in plants and how a stressor modulates expression of the genes related with ligninsynthesis.
Abstract: Lignin is a polymer of phenylpropanoid compounds formed through a complex biosynthesis route, represented by a metabolic grid for which most of the genes involved have been sequenced in several plants, mainly in the model-plants Arabidopsis thaliana and Populus. Plants are exposed to different stresses, which may change lignin content and composition. In many cases, particularly for plant-microbe interactions, this has been suggested as defence responses of plants to the stress. Thus, understanding how a stressor modulates expression of the genes related with lignin biosynthesis may allow us to develop study-models to increase our knowledge on the metabolic control of lignin deposition in the cell wall. This review focuses on recent literature reporting on the main types of abiotic and biotic stresses that alter the biosynthesis of lignin in plants.

761 citations

Journal ArticleDOI
TL;DR: The data provide the first in-depth characterization of lignin biosynthesis in sugarcane and form the baseline for the rational metabolic engineering of sugarcanes feedstock for bioenergy purposes.
Abstract: Sugarcane (Saccharum spp.) is currently one of the most efficient crops in the production of first-generation biofuels. However, the bagasse represents an additional abundant lignocellulosic resource that has the potential to increase the ethanol production per plant. To achieve a more efficient conversion of bagasse into ethanol, a better understanding of the main factors affecting biomass recalcitrance is needed. Because several studies have shown a negative effect of lignin on saccharification yield, the characterization of lignin biosynthesis, structure, and deposition in sugarcane is an important goal. Here, we present, to our knowledge, the first systematic study of lignin deposition during sugarcane stem development, using histological, biochemical, and transcriptional data derived from two sugarcane genotypes with contrasting lignin contents. Lignin amount and composition were determined in rind (outer) and pith (inner) tissues throughout stem development. In addition, the phenolic metabolome was analyzed by ultra-high-performance liquid chromatography-mass spectrometry, which allowed the identification of 35 compounds related to the phenylpropanoid pathway and monolignol biosynthesis. Furthermore, the Sugarcane EST Database was extensively surveyed to identify lignin biosynthetic gene homologs, and the expression of all identified genes during stem development was determined by quantitative reverse transcription-polymerase chain reaction. Our data provide, to our knowledge, the first in-depth characterization of lignin biosynthesis in sugarcane and form the baseline for the rational metabolic engineering of sugarcane feedstock for bioenergy purposes.

95 citations

Journal ArticleDOI
TL;DR: Comparing these results with those of other studies on eucalyptus, it is concluded that five genes are stable in different species and experimental conditions: IDH, SAND, ACT, A-Tub, and UBQ (ubiquitin).
Abstract: The genus Eucalyptus consists of approximately 600 species and subspecies and has a physiological plasticity that allows some species to propagate in different regions of the world. Eucalyptus is a major source of cellulose for paper manufacturing, and its cultivation is limited by weather conditions, particularly water stress and low temperatures. Gene expression studies using quantitative reverse transcription polymerase chain reaction (qPCR) require reference genes, which must have stable expression to facilitate the comparison of the results from analyses using different species, tissues, and treatments. Such studies have been limited in eucalyptus.

24 citations

Journal ArticleDOI
TL;DR: Semi-quantitative RT-PCR expression assays showed that Açaí and Juçara PPOs were strongly expressed in palmitos and weakly expressed in leaves, and no amplification was observed for Pupunha samples.

19 citations

Journal ArticleDOI
TL;DR: The aim of this study was to determine which anthocyanins are related to the purple coloration of young leaves in Coffea arabica var.
Abstract: The aim of this study was to determine which anthocyanins are related to the purple coloration of young leaves in Coffea arabica var Purpurascens and assess their impact on photosynthesis as compared to C arabica var Catuai, with green leaves Two delphinidin glicosides were identified and histological cross-sections showed they were located throughout the adaxial epidermis in young leaves, disappearing as the leaves mature Regardless the irradiance level, the photosynthetic performance of Purpurascens leaves did not differ from that observed in leaves of the Catuai variety, providing no evidence that anthocyanins improve photosynthetic performance in coffee plants To analyze the photoprotective action of anthocyanins, we evaluated the isomerization process for chlorogenic acids (CGAs) in coffee leaves exposed to UV-B radiation No differences were observed in the total concentration of phenolic compounds in either variety before or after the UV treatment; however, we observed less degradation of CGA isomers in the Purpurascens leaves and a relative increase of cis-5-caffeoylquinic acid, a positional isomer of one of the most abundant form of CQA in coffee leaves, trans-5-caffeoylquinic acid, suggesting a possible protective role for anthocyanins in this purple coffee variety

15 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review provides a “beginning‐to‐end” analysis of the recent advances reported in lignin valorisation, with particular emphasis on the improved understanding of lign in's biosynthesis and structure.
Abstract: Lignin is an abundant biopolymer with a high carbon content and high aromaticity. Despite its potential as a raw material for the fuel and chemical industries, lignin remains the most poorly utilised of the lignocellulosic biopolymers. Effective valorisation of lignin requires careful fine-tuning of multiple "upstream" (i.e., lignin bioengineering, lignin isolation and "early-stage catalytic conversion of lignin") and "downstream" (i.e., lignin depolymerisation and upgrading) process stages, demanding input and understanding from a broad array of scientific disciplines. This review provides a "beginning-to-end" analysis of the recent advances reported in lignin valorisation. Particular emphasis is placed on the improved understanding of lignin's biosynthesis and structure, differences in structure and chemical bonding between native and technical lignins, emerging catalytic valorisation strategies, and the relationships between lignin structure and catalyst performance.

1,390 citations

Journal ArticleDOI
16 Feb 2015
TL;DR: The results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall and identify the key components that could be targeted to improve biomass production under stress conditions.
Abstract: This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions.

813 citations

Journal ArticleDOI
TL;DR: This review describes recent progress in deciphering the mechanisms controlling ion homeostasis, cell activity responses, and epigenetic regulation in plants under salt stress and highlights research areas that require further research to reveal new determinants of salt tolerance in plants.
Abstract: Contents Summary 523 I. Introduction 523 II. Sensing salt stress 524 III. Ion homeostasis regulation 524 IV. Metabolite and cell activity responses to salt stress 527 V. Conclusions and perspectives 532 Acknowledgements 533 References 533 SUMMARY: Excess soluble salts in soil (saline soils) are harmful to most plants. Salt imposes osmotic, ionic, and secondary stresses on plants. Over the past two decades, many determinants of salt tolerance and their regulatory mechanisms have been identified and characterized using molecular genetics and genomics approaches. This review describes recent progress in deciphering the mechanisms controlling ion homeostasis, cell activity responses, and epigenetic regulation in plants under salt stress. Finally, we highlight research areas that require further research to reveal new determinants of salt tolerance in plants.

703 citations

Journal ArticleDOI
TL;DR: It is hoped this review will give an in-depth understanding of the important roles of lignin biosynthesis in various plants’ biological processes and provide a theoretical basis for the genetic improvement of lIGNin content and composition in energy plants and crops.
Abstract: Lignin is one of the main components of plant cell wall and it is a natural phenolic polymer with high molecular weight, complex composition and structure. Lignin biosynthesis extensively contributes to plant growth, tissue/organ development, lodging resistance and the responses to a variety of biotic and abiotic stresses. In the present review, we systematically introduce the biosynthesis of lignin and its regulation by genetic modification and summarize the main biological functions of lignin in plants and their applications. We hope this review will give an in-depth understanding of the important roles of lignin biosynthesis in various plants’ biological processes and provide a theoretical basis for the genetic improvement of lignin content and composition in energy plants and crops.

637 citations

Journal ArticleDOI
TL;DR: Key players in this process are the formation of reactive oxygen species (ROS) and peroxidases, which initially cross-link phenolic compounds and glycoproteins of the cell walls causing stiffening, which allows further growth of stressed organs.
Abstract: Plants exposed to abiotic stress respond to unfavorable conditions on multiple levels. One challenge under drought stress is to reduce shoot growth while maintaining root growth, a process requiring differential cell wall synthesis and remodeling. Key players in this process are the formation of reactive oxygen species (ROS) and peroxidases, which initially cross-link phenolic compounds and glycoproteins of the cell walls causing stiffening. The function of ROS shifts after having converted all the peroxidase substrates in the cell wall. If ROS-levels remain high during prolonged stress, OH°-radicals are formed which lead to polymer cleavage. In concert with xyloglucan modifying enzymes and expansins, the resulting cell wall loosening allows further growth of stressed organs.

502 citations