scispace - formally typeset
Search or ask a question
Author

Jun Kang

Bio: Jun Kang is an academic researcher from Lawrence Berkeley National Laboratory. The author has contributed to research in topics: Band gap & Graphene. The author has an hindex of 37, co-authored 104 publications receiving 6581 citations. Previous affiliations of Jun Kang include Chinese Academy of Sciences & Zhejiang Normal University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the band offsets and heterostructures of monolayer and few-layer transition-metal dichalcogenides MX2 (M = Mo, W; X = S, Se, Te) are investigated from first principles calculations.
Abstract: The band offsets and heterostructures of monolayer and few-layer transition-metal dichalcogenides MX2 (M = Mo, W; X = S, Se, Te) are investigated from first principles calculations. The band alignments between different MX2 monolayers are calculated using the vacuum level as reference, and a simple model is proposed to explain the observed chemical trends. Some of the monolayers and their heterostructures show band alignments suitable for potential applications in spontaneous water splitting, photovoltaics, and optoelectronics. The strong dependence of the band offset on the number of layers also implicates a possible way of patterning quantum structures with thickness engineering.

1,422 citations

Journal ArticleDOI
TL;DR: Interestingly, CsPbBr3 is found to be highly defect-tolerant in terms of its electronic structure, which can maintain its good electronic quality despite the presence of defects.
Abstract: The formation energies and charge-transition levels of intrinsic point defects in lead halide perovskite CsPbBr3 are studied from first-principles calculations. It is shown that the formation energy of dominant defect under Br-rich growth condition is much lower than that under moderate or Br-poor conditions. Thus avoiding the Br-rich condition can help to reduce the defect concentration. Interestingly, CsPbBr3 is found to be highly defect-tolerant in terms of its electronic structure. Most of the intrinsic defects induce shallow transition levels. Only a few defects with high formation energies can create deep transition levels. Therefore, CsPbBr3 can maintain its good electronic quality despite the presence of defects. Such defect tolerance feature can be attributed to the lacking of bonding–antibonding interaction between the conduction bands and valence bands.

822 citations

Journal ArticleDOI
TL;DR: This work demonstrates large-area (>tens of micrometers) heterostructures of CVD-grown WS2 and MoS2 monolayers, where the interlayer interaction is externally tuned from noncoupling to strong coupling, which opens up venues to creating new material systems with rich functionalities and novel physical effects.
Abstract: Band offsets between different monolayer transition metal dichalcogenides are expected to efficiently separate charge carriers or rectify charge flow, offering a mechanism for designing atomically thin devices and probing exotic two-dimensional physics. However, developing such large-area heterostructures has been hampered by challenges in synthesis of monolayers and effectively coupling neighboring layers. Here, we demonstrate large-area (>tens of micrometers) heterostructures of CVD-grown WS2 and MoS2 monolayers, where the interlayer interaction is externally tuned from noncoupling to strong coupling. Following this trend, the luminescence spectrum of the heterostructures evolves from an additive line profile where each layer contributes independently to a new profile that is dictated by charge transfer and band normalization between the WS2 and MoS2 layers. These results and findings open up venues to creating new material systems with rich functionalities and novel physical effects.

692 citations

Journal ArticleDOI
TL;DR: This work provides a systematic framework for preparing highly luminescent CsPbX3 nanocrystals with variable compositions and dimensionalities, thereby improving the fundamental understanding of these materials and informing future synthetic and post-synthetic efforts toward trap-free CspbX2 nanocrystal efforts.
Abstract: We introduce a general surface passivation mechanism for cesium lead halide perovskite materials (CsPbX3, X = Cl, Br, I) that is supported by a combined experimental and theoretical study of the nanocrystal surface chemistry. A variety of spectroscopic methods are employed together with ab initio calculations to identify surface halide vacancies as the predominant source of charge trapping. The number of surface traps per nanocrystal is quantified by 1H NMR spectroscopy, and that number is consistent with a simple trapping model in which surface halide vacancies create deleterious under-coordinated lead atoms. These halide vacancies exhibit trapping behavior that differs among CsPbCl3, CsPbBr3, and CsPbI3. Ab initio calculations suggest that introduction of anionic X-type ligands can produce trap-free band gaps by altering the energetics of lead-based defect levels. General rules for selecting effective passivating ligand pairs are introduced by considering established principles of coordination chemistry. Introducing softer, anionic, X-type Lewis bases that target under-coordinated lead atoms results in absolute quantum yields approaching unity and monoexponential luminescence decay kinetics, thereby indicating full trap passivation. This work provides a systematic framework for preparing highly luminescent CsPbX3 nanocrystals with variable compositions and dimensionalities, thereby improving the fundamental understanding of these materials and informing future synthetic and post-synthetic efforts toward trap-free CsPbX3 nanocrystals.

383 citations

Journal ArticleDOI
TL;DR: In this article, the multilayer van der Waals heterostructures with different configurations are reported and their optoelectronic properties are studied and shown to possess new functionalities and superior electrical and optical properties that far exceed the one for their constituents, MoS2 or WS2.
Abstract: Van der Waals heterostructures designed by assembling isolated two-dimensional (2D) crystals have emerged as a new class of artificial materials with interesting and unusual physical properties. Here, the multilayer MoS2–WS2 heterostructures with different configurations are reported and their optoelectronic properties are studied. It is shown that the new heterostructured material possesses new functionalities and superior electrical and optoelectronic properties that far exceed the one for their constituents, MoS2 or WS2. The vertical transistor exhibits a novel rectifying and bipolar behavior, and can also act as photovoltaic cell and self-driven photodetector with photo-switching ratio exceeding 103. The planar device also exhibits high field-effect ON/OFF ratio (>105), high electron mobility of 65 cm2/Vs, and high photo­responsivity of 1.42 A/W compared to that in isolated multilayer MoS2 or WS2 nanoflake transistors. The results suggest that formation of MoS2–WS2 heterostructures could significantly enhance the performance of optoelectronic devices, thus open up possibilities for future nanoelectronic, photovoltaic, and optoelectronic applications.

380 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
29 Jul 2016-Science
TL;DR: Two-dimensional heterostructures with extended range of functionalities yields a range of possible applications, and spectrum reconstruction in graphene interacting with hBN allowed several groups to study the Hofstadter butterfly effect and topological currents in such a system.
Abstract: BACKGROUND Materials by design is an appealing idea that is very hard to realize in practice. Combining the best of different ingredients in one ultimate material is a task for which we currently have no general solution. However, we do have some successful examples to draw upon: Composite materials and III-V heterostructures have revolutionized many aspects of our lives. Still, we need a general strategy to solve the problem of mixing and matching crystals with different properties, creating combinations with predetermined attributes and functionalities. ADVANCES Two-dimensional (2D) materials offer a platform that allows creation of heterostructures with a variety of properties. One-atom-thick crystals now comprise a large family of these materials, collectively covering a very broad range of properties. The first material to be included was graphene, a zero-overlap semimetal. The family of 2D crystals has grown to includes metals (e.g., NbSe 2 ), semiconductors (e.g., MoS 2 ), and insulators [e.g., hexagonal boron nitride (hBN)]. Many of these materials are stable at ambient conditions, and we have come up with strategies for handling those that are not. Surprisingly, the properties of such 2D materials are often very different from those of their 3D counterparts. Furthermore, even the study of familiar phenomena (like superconductivity or ferromagnetism) in the 2D case, where there is no long-range order, raises many thought-provoking questions. A plethora of opportunities appear when we start to combine several 2D crystals in one vertical stack. Held together by van der Waals forces (the same forces that hold layered materials together), such heterostructures allow a far greater number of combinations than any traditional growth method. As the family of 2D crystals is expanding day by day, so too is the complexity of the heterostructures that could be created with atomic precision. When stacking different crystals together, the synergetic effects become very important. In the first-order approximation, charge redistribution might occur between the neighboring (and even more distant) crystals in the stack. Neighboring crystals can also induce structural changes in each other. Furthermore, such changes can be controlled by adjusting the relative orientation between the individual elements. Such heterostructures have already led to the observation of numerous exciting physical phenomena. Thus, spectrum reconstruction in graphene interacting with hBN allowed several groups to study the Hofstadter butterfly effect and topological currents in such a system. The possibility of positioning crystals in very close (but controlled) proximity to one another allows for the study of tunneling and drag effects. The use of semiconducting monolayers leads to the creation of optically active heterostructures. The extended range of functionalities of such heterostructures yields a range of possible applications. Now the highest-mobility graphene transistors are achieved by encapsulating graphene with hBN. Photovoltaic and light-emitting devices have been demonstrated by combining optically active semiconducting layers and graphene as transparent electrodes. OUTLOOK Currently, most 2D heterostructures are composed by direct stacking of individual monolayer flakes of different materials. Although this method allows ultimate flexibility, it is slow and cumbersome. Thus, techniques involving transfer of large-area crystals grown by chemical vapor deposition (CVD), direct growth of heterostructures by CVD or physical epitaxy, or one-step growth in solution are being developed. Currently, we are at the same level as we were with graphene 10 years ago: plenty of interesting science and unclear prospects for mass production. Given the fast progress of graphene technology over the past few years, we can expect similar advances in the production of the heterostructures, making the science and applications more achievable.

4,851 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the methods used to synthesize transition metal dichalcogenides (TMDCs) and their properties with particular attention to their charge density wave, superconductive and topological phases, along with their applications in devices with enhanced mobility and with the use of strain engineering to improve their properties.
Abstract: Graphene is very popular because of its many fascinating properties, but its lack of an electronic bandgap has stimulated the search for 2D materials with semiconducting character. Transition metal dichalcogenides (TMDCs), which are semiconductors of the type MX2, where M is a transition metal atom (such as Mo or W) and X is a chalcogen atom (such as S, Se or Te), provide a promising alternative. Because of its robustness, MoS2 is the most studied material in this family. TMDCs exhibit a unique combination of atomic-scale thickness, direct bandgap, strong spin–orbit coupling and favourable electronic and mechanical properties, which make them interesting for fundamental studies and for applications in high-end electronics, spintronics, optoelectronics, energy harvesting, flexible electronics, DNA sequencing and personalized medicine. In this Review, the methods used to synthesize TMDCs are examined and their properties are discussed, with particular attention to their charge density wave, superconductive and topological phases. The use of TMCDs in nanoelectronic devices is also explored, along with strategies to improve charge carrier mobility, high frequency operation and the use of strain engineering to tailor their properties. Two-dimensional transition metal dichalcogenides (TMDCs) exhibit attractive electronic and mechanical properties. In this Review, the charge density wave, superconductive and topological phases of TMCDs are discussed, along with their synthesis and applications in devices with enhanced mobility and with the use of strain engineering to improve their properties.

3,436 citations

01 Jun 2005

3,154 citations