scispace - formally typeset
J

Jun Kawai

Researcher at University of Tokyo

Publications -  158
Citations -  43225

Jun Kawai is an academic researcher from University of Tokyo. The author has contributed to research in topics: Gene & Genome. The author has an hindex of 66, co-authored 153 publications receiving 40867 citations. Previous affiliations of Jun Kawai include University of California, San Diego & University of Bergen.

Papers
More filters
Journal ArticleDOI

Initial sequencing and comparative analysis of the mouse genome.

Robert H. Waterston, +222 more
- 05 Dec 2002 - 
TL;DR: The results of an international collaboration to produce a high-quality draft sequence of the mouse genome are reported and an initial comparative analysis of the Mouse and human genomes is presented, describing some of the insights that can be gleaned from the two sequences.
Journal ArticleDOI

Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project

Ewan Birney, +320 more
- 14 Jun 2007 - 
TL;DR: Functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project are reported, providing convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts.
Journal ArticleDOI

The Transcriptional Landscape of the Mammalian Genome

Piero Carninci, +197 more
- 02 Sep 2005 - 
TL;DR: Detailed polling of transcription start and termination sites and analysis of previously unidentified full-length complementary DNAs derived from the mouse genome provide a comprehensive platform for the comparative analysis of mammalian transcriptional regulation in differentiation and development.
Journal ArticleDOI

An atlas of active enhancers across human cell types and tissues

TL;DR: It is shown that enhancers share properties with CpG-poor messenger RNA promoters but produce bidirectional, exosome-sensitive, relatively short unspliced RNAs, the generation of which is strongly related to enhancer activity.
Journal ArticleDOI

Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray.

TL;DR: A full-length cDNA microarray containing approximately 7000 independent, full- length cDNA groups is prepared to analyse the expression profiles of genes under drought, cold (low temperature) and high-salinity stress conditions over time, suggesting that various transcriptional regulatory mechanisms function in the drought,cold or high- salinity stress signal transduction pathways.