Author
Jun Li
Other affiliations: Northeastern University, Massachusetts Institute of Technology, University of Maryland, College Park
Bio: Jun Li is an academic researcher from Nanjing University of Science and Technology. The author has contributed to research in topics: Cluster analysis & Feature learning. The author has an hindex of 19, co-authored 70 publications receiving 1092 citations. Previous affiliations of Jun Li include Northeastern University & Massachusetts Institute of Technology.
Papers
More filters
Posted Content•
TL;DR: Improved representations of quality estimation into the class prediction vector to form a joint representation of localization quality and classification, and use a vector to represent arbitrary distribution of box locations are designed.
Abstract: One-stage detector basically formulates object detection as dense classification and localization. The classification is usually optimized by Focal Loss and the box location is commonly learned under Dirac delta distribution. A recent trend for one-stage detectors is to introduce an individual prediction branch to estimate the quality of localization, where the predicted quality facilitates the classification to improve detection performance. This paper delves into the representations of the above three fundamental elements: quality estimation, classification and localization. Two problems are discovered in existing practices, including (1) the inconsistent usage of the quality estimation and classification between training and inference and (2) the inflexible Dirac delta distribution for localization when there is ambiguity and uncertainty in complex scenes. To address the problems, we design new representations for these elements. Specifically, we merge the quality estimation into the class prediction vector to form a joint representation of localization quality and classification, and use a vector to represent arbitrary distribution of box locations. The improved representations eliminate the inconsistency risk and accurately depict the flexible distribution in real data, but contain continuous labels, which is beyond the scope of Focal Loss. We then propose Generalized Focal Loss (GFL) that generalizes Focal Loss from its discrete form to the continuous version for successful optimization. On COCO test-dev, GFL achieves 45.0\% AP using ResNet-101 backbone, surpassing state-of-the-art SAPD (43.5\%) and ATSS (43.6\%) with higher or comparable inference speed, under the same backbone and training settings. Notably, our best model can achieve a single-model single-scale AP of 48.2\%, at 10 FPS on a single 2080Ti GPU. Code and models are available at this https URL.
260 citations
01 Oct 2019
TL;DR: Cross-X learning as mentioned in this paper exploits the relationships between different images and between different network layers for robust multi-scale feature learning, which can be easily trained end-to-end and is scalable to large datasets like NABirds.
Abstract: Recognizing objects from subcategories with very subtle differences remains a challenging task due to the large intra-class and small inter-class variation. Recent work tackles this problem in a weakly-supervised manner: object parts are first detected and the corresponding part-specific features are extracted for fine-grained classification. However, these methods typically treat the part-specific features of each image in isolation while neglecting their relationships between different images. In this paper, we propose Cross-X learning, a simple yet effective approach that exploits the relationships between different images and between different network layers for robust multi-scale feature learning. Our approach involves two novel components: (i) a cross-category cross-semantic regularizer that guides the extracted features to represent semantic parts and, (ii) a cross-layer regularizer that improves the robustness of multi-scale features by matching the prediction distribution across multiple layers. Our approach can be easily trained end-to-end and is scalable to large datasets like NABirds. We empirically analyze the contributions of different components of our approach and demonstrate its robustness, effectiveness and state-of-the-art performance on five benchmark datasets. Code is available at \url{https://github.com/cswluo/CrossX}.
166 citations
TL;DR: The proposed end-to-end Line-CNN system, in which the key component is a novel line proposal unit (LPU), outperforms the state-of-the-art methods, indicates the practicability and effectiveness of L-CNN for real-time intelligent self-driving systems.
Abstract: The task of traffic line detection is a fundamental yet challenging problem. Previous approaches usually conduct traffic line detection via a two-stage way, namely the line segment detection followed by a segment clustering, which is very likely to ignore the global semantic information of an entire line. To address the problem, we propose an end-to-end system called Line-CNN (L-CNN), in which the key component is a novel line proposal unit (LPU). The LPU utilizes line proposals as references to locate accurate traffic curves, which forces the system to learn the global feature representation of the entire traffic lines. We benchmark the proposed L-CNN on two public datasets including MIKKI and TuSimple, and the results suggest that L-CNN outperforms the state-of-the-art methods. In addition, L-CNN can run at approximately 30 f/s on a Titan X GPU, which indicates the practicability and effectiveness of L-CNN for real-time intelligent self-driving systems.
146 citations
TL;DR: A convolutional sparse auto-encoder (CSAE), which leverages the structure of the Convolutional AE and incorporates the max-pooling to heuristically sparsify the feature maps for feature learning and makes the stochastic gradient descent algorithm work efficiently for the CSAE training.
Abstract: Convolutional sparse coding (CSC) can model local connections between image content and reduce the code redundancy when compared with patch-based sparse coding. However, CSC needs a complicated optimization procedure to infer the codes (i.e., feature maps). In this brief, we proposed a convolutional sparse auto-encoder (CSAE), which leverages the structure of the convolutional AE and incorporates the max-pooling to heuristically sparsify the feature maps for feature learning. Together with competition over feature channels, this simple sparsifying strategy makes the stochastic gradient descent algorithm work efficiently for the CSAE training; thus, no complicated optimization procedure is involved. We employed the features learned in the CSAE to initialize convolutional neural networks for classification and achieved competitive results on benchmark data sets. In addition, by building connections between the CSAE and CSC, we proposed a strategy to construct local descriptors from the CSAE for classification. Experiments on Caltech-101 and Caltech-256 clearly demonstrated the effectiveness of the proposed method and verified the CSAE as a CSC model has the ability to explore connections between neighboring image content for classification tasks.
114 citations
Posted Content•
TL;DR: This paper explores a completely novel and different perspective to perform LQE – based on the learned distributions of the four parameters of the bounding box – and develops a considerably lightweight Distribution-Guided Quality Predictor (DGQP) for reliable LqE based on GFLV1, thus producing GFLv2.
Abstract: Localization Quality Estimation (LQE) is crucial and popular in the recent advancement of dense object detectors since it can provide accurate ranking scores that benefit the Non-Maximum Suppression processing and improve detection performance. As a common practice, most existing methods predict LQE scores through vanilla convolutional features shared with object classification or bounding box regression. In this paper, we explore a completely novel and different perspective to perform LQE -- based on the learned distributions of the four parameters of the bounding box. The bounding box distributions are inspired and introduced as "General Distribution" in GFLV1, which describes the uncertainty of the predicted bounding boxes well. Such a property makes the distribution statistics of a bounding box highly correlated to its real localization quality. Specifically, a bounding box distribution with a sharp peak usually corresponds to high localization quality, and vice versa. By leveraging the close correlation between distribution statistics and the real localization quality, we develop a considerably lightweight Distribution-Guided Quality Predictor (DGQP) for reliable LQE based on GFLV1, thus producing GFLV2. To our best knowledge, it is the first attempt in object detection to use a highly relevant, statistical representation to facilitate LQE. Extensive experiments demonstrate the effectiveness of our method. Notably, GFLV2 (ResNet-101) achieves 46.2 AP at 14.6 FPS, surpassing the previous state-of-the-art ATSS baseline (43.6 AP at 14.6 FPS) by absolute 2.6 AP on COCO {\tt test-dev}, without sacrificing the efficiency both in training and inference. Code will be available at this https URL
94 citations
Cited by
More filters
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.
10,141 citations
TL;DR: Res2Net as mentioned in this paper constructs hierarchical residual-like connections within one single residual block to represent multi-scale features at a granular level and increases the range of receptive fields for each network layer.
Abstract: Representing features at multiple scales is of great importance for numerous vision tasks. Recent advances in backbone convolutional neural networks (CNNs) continually demonstrate stronger multi-scale representation ability, leading to consistent performance gains on a wide range of applications. However, most existing methods represent the multi-scale features in a layer-wise manner. In this paper, we propose a novel building block for CNNs, namely Res2Net, by constructing hierarchical residual-like connections within one single residual block. The Res2Net represents multi-scale features at a granular level and increases the range of receptive fields for each network layer. The proposed Res2Net block can be plugged into the state-of-the-art backbone CNN models, e.g., ResNet, ResNeXt, and DLA. We evaluate the Res2Net block on all these models and demonstrate consistent performance gains over baseline models on widely-used datasets, e.g., CIFAR-100 and ImageNet. Further ablation studies and experimental results on representative computer vision tasks, i.e., object detection, class activation mapping, and salient object detection, further verify the superiority of the Res2Net over the state-of-the-art baseline methods. The source code and trained models are available on https://mmcheng.net/res2net/ .
1,553 citations
Posted Content•
TL;DR: This work proposes the Learning without Forgetting method, which uses only new task data to train the network while preserving the original capabilities, and performs favorably compared to commonly used feature extraction and fine-tuning adaption techniques.
Abstract: When building a unified vision system or gradually adding new capabilities to a system, the usual assumption is that training data for all tasks is always available. However, as the number of tasks grows, storing and retraining on such data becomes infeasible. A new problem arises where we add new capabilities to a Convolutional Neural Network (CNN), but the training data for its existing capabilities are unavailable. We propose our Learning without Forgetting method, which uses only new task data to train the network while preserving the original capabilities. Our method performs favorably compared to commonly used feature extraction and fine-tuning adaption techniques and performs similarly to multitask learning that uses original task data we assume unavailable. A more surprising observation is that Learning without Forgetting may be able to replace fine-tuning with similar old and new task datasets for improved new task performance.
1,037 citations
Posted Content•
TL;DR: Huang et al. as discussed by the authors proposed Pyramid Vision Transformer (PVT), which is a simple backbone network useful for many dense prediction tasks without convolutions, and achieved state-of-the-art performance on the COCO dataset.
Abstract: Although using convolutional neural networks (CNNs) as backbones achieves great successes in computer vision, this work investigates a simple backbone network useful for many dense prediction tasks without convolutions. Unlike the recently-proposed Transformer model (e.g., ViT) that is specially designed for image classification, we propose Pyramid Vision Transformer~(PVT), which overcomes the difficulties of porting Transformer to various dense prediction tasks. PVT has several merits compared to prior arts. (1) Different from ViT that typically has low-resolution outputs and high computational and memory cost, PVT can be not only trained on dense partitions of the image to achieve high output resolution, which is important for dense predictions but also using a progressive shrinking pyramid to reduce computations of large feature maps. (2) PVT inherits the advantages from both CNN and Transformer, making it a unified backbone in various vision tasks without convolutions by simply replacing CNN backbones. (3) We validate PVT by conducting extensive experiments, showing that it boosts the performance of many downstream tasks, e.g., object detection, semantic, and instance segmentation. For example, with a comparable number of parameters, RetinaNet+PVT achieves 40.4 AP on the COCO dataset, surpassing RetinNet+ResNet50 (36.3 AP) by 4.1 absolute AP. We hope PVT could serve as an alternative and useful backbone for pixel-level predictions and facilitate future researches. Code is available at this https URL.
845 citations
TL;DR: YOLOv7 surpasses all known object detectors in both speed and accuracy in the range from 5 FPS to 160 FPS and has the highest accuracy 56.8% AP among all known real-time object detectors with 30 FPS or higher on GPU V100.
Abstract: YOLOv7 surpasses all known object detectors in both speed and accuracy in the range from 5 FPS to 160 FPS and has the highest accuracy 56.8% AP among all known real-time object detectors with 30 FPS or higher on GPU V100. YOLOv7-E6 object detector (56 FPS V100, 55.9% AP) outperforms both transformer-based detector SWIN-L Cascade-Mask R-CNN (9.2 FPS A100, 53.9% AP) by 509% in speed and 2% in accuracy, and convolutional-based detector ConvNeXt-XL Cascade-Mask R-CNN (8.6 FPS A100, 55.2% AP) by 551% in speed and 0.7% AP in accuracy, as well as YOLOv7 outperforms: YOLOR, YOLOX, Scaled-YOLOv4, YOLOv5, DETR, Deformable DETR, DINO-5scale-R50, ViT-Adapter-B and many other object detectors in speed and accuracy. Moreover, we train YOLOv7 only on MS COCO dataset from scratch without using any other datasets or pre-trained weights. Source code is released in https://github.com/WongKinYiu/yolov7.
685 citations