scispace - formally typeset
Search or ask a question
Author

Jun Li

Other affiliations: Wilmington University
Bio: Jun Li is an academic researcher from Oregon State University. The author has contributed to research in topics: Pyrochlore & Neutron diffraction. The author has an hindex of 16, co-authored 45 publications receiving 1362 citations. Previous affiliations of Jun Li include Wilmington University.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, complex impedance spectra were obtained on a crystal of CaCu3Ti4O12 (CCTO) from 289 to 456 K. As in the case of ceramic CCTO, these spectra can be interpreted as arising from a conducting material containing insulating barriers.

206 citations

Journal ArticleDOI
TL;DR: In this paper, the 2H and 3R forms of CuMo2 and AgMO2 have been intercalated with oxygen up to a formula of CuScO2 to induce p-type conductivity.

203 citations

Journal ArticleDOI
TL;DR: In this article, the authors obtained powder neutron diffraction data from 30 to 600K for CuAlO{sub 2, CuInO} and AgInO{Sub 2] and showed negative thermal expansion (NTE) of the O-Cu-O linkage in all cases.

50 citations

Journal ArticleDOI
TL;DR: Electron paramagnetic resonance measurements indicate that manganese in as-prepared samples is substituting predominantly as Mn(5+) for all values of x with observed paramagnetic spin-only moments close to values expected for two unpaired electrons.
Abstract: Brownmillerite-type oxides Ba2In2–xMnxO5+x (x = 0.1–0.7) have been prepared and characterized. Magnetic measurements indicate that manganese in as-prepared samples is substituting predominantly as ...

35 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A survey of the literature for ca. one thousand B-site substituted perovskite oxides can be found in this article, together with their electronic and magnetic properties and properties.

815 citations

Journal ArticleDOI
TL;DR: The existence of a magnetodielectric (magnetocapacitance) effect is often used as a test for multiferroic behavior in new material systems.
Abstract: The existence of a magnetodielectric (magnetocapacitance) effect is often used as a test for multiferroic behavior in new material systems. However, strong magnetodielectric effects can also be achieved through a combination of magnetoresistance and the Maxwell-Wagner effect, unrelated to true magnetoelectric coupling. The fact that this resistive magnetocapacitance does not require multiferroic materials may be advantageous for practical applications. Conversely, however, it also implies that magnetocapacitance per se is not sufficient to establish that a material is multiferroic.

804 citations

Journal ArticleDOI
TL;DR: In this article, the performance of zinc oxide (ZnO) has been improved by tailoring its surface-bulk structure and altering its photogenerated charge transfer pathways with an intention to inhibit the surfacebulk charge carrier recombination.
Abstract: As an alternative to the gold standard TiO2 photocatalyst, the use of zinc oxide (ZnO) as a robust candidate for wastewater treatment is widespread due to its similarity in charge carrier dynamics upon bandgap excitation and the generation of reactive oxygen species in aqueous suspensions with TiO2. However, the large bandgap of ZnO, the massive charge carrier recombination, and the photoinduced corrosion–dissolution at extreme pH conditions, together with the formation of inert Zn(OH)2 during photocatalytic reactions act as barriers for its extensive applicability. To this end, research has been intensified to improve the performance of ZnO by tailoring its surface-bulk structure and by altering its photogenerated charge transfer pathways with an intention to inhibit the surface-bulk charge carrier recombination. For the first time, the several strategies, such as tailoring the intrinsic defects, surface modification with organic compounds, doping with foreign ions, noble metal deposition, heterostructuring with other semiconductors and modification with carbon nanostructures, which have been successfully employed to improve the photoactivity and stability of ZnO are critically reviewed. Such modifications enhance the charge separation and facilitate the generation of reactive oxygenated free radicals, and also the interaction with the pollutant molecules. The synthetic route to obtain hierarchical nanostructured morphologies and study their impact on the photocatalytic performance is explained by considering the morphological influence and the defect-rich chemistry of ZnO. Finally, the crystal facet engineering of polar and non-polar facets and their relevance in photocatalysis is outlined. It is with this intention that the present review directs the further design, tailoring and tuning of the physico-chemical and optoelectronic properties of ZnO for better applications, ranging from photocatalysis to photovoltaics.

643 citations

Journal ArticleDOI
TL;DR: P-type oxides still lag in performance behind their n-type counterparts, which have entered volume production in the display market, and recent successes along with the hurdles that stand in the way of commercial success of p-type oxide semiconductors are presented.
Abstract: The development of transparent p-type oxide semiconductors with good performance may be a true enabler for a variety of applications where transparency, power efficiency, and greater circuit complexity are needed. Such applications include transparent electronics, displays, sensors, photovoltaics, memristors, and electrochromics. Hence, here, recent developments in materials and devices based on p-type oxide semiconductors are reviewed, including ternary Cu-bearing oxides, binary copper oxides, tin monoxide, spinel oxides, and nickel oxides. The crystal and electronic structures of these materials are discussed, along with approaches to enhance valence-band dispersion to reduce effective mass and increase mobility. Strategies to reduce interfacial defects, off-state current, and material instability are suggested. Furthermore, it is shown that promising progress has been made in the performance of various types of devices based on p-type oxides. Several innovative approaches exist to fabricate transparent complementary metal oxide semiconductor (CMOS) devices, including novel device fabrication schemes and utilization of surface chemistry effects, resulting in good inverter gains. However, despite recent developments, p-type oxides still lag in performance behind their n-type counterparts, which have entered volume production in the display market. Recent successes along with the hurdles that stand in the way of commercial success of p-type oxide semiconductors are presented.

507 citations

Journal ArticleDOI
TL;DR: In this paper, the thermoelectric properties of promising oxide materials are reviewed and approaches for improving performance through doping are discussed, and different types of oxides used for thermocyanide applications are compared.
Abstract: Thermoelectric energy conversion can be used to capture electric power from waste heat in a variety of applications. The materials that have been shown to have the best thermoelectric properties are compounds containing elements such as tellurium and antimony. These compounds can be oxidized if exposed to the high temperature air that may be present in heat recovery applications. Oxide materials have better stability in oxidizing environments, so their use enables the fabrication of more durable devices. Thus, although the thermoelectric properties of oxides are inferior to those of the compounds mentioned above, their superior stability may expand potential the high temperature application of thermoelectric energy conversion. In this paper, the thermoelectric properties of promising oxide materials are reviewed. The different types of oxides used for thermoelectric applications are compared and approaches for improving performance through doping are discussed.

474 citations