scispace - formally typeset
Search or ask a question
Author

Jun Li

Bio: Jun Li is an academic researcher from Southern University of Science and Technology. The author has contributed to research in topics: Chemical bond & Cluster (physics). The author has an hindex of 45, co-authored 116 publications receiving 7526 citations. Previous affiliations of Jun Li include Ohio State University & Tsinghua University.


Papers
More filters
Journal ArticleDOI
07 Feb 2003-Science
TL;DR: Using relativistic density functional calculations, it is found that Au20 possesses a tetrahedral structure, which is a fragment of the face-centered cubic lattice of bulk gold with a small structural relaxation, which suggests that the Au20 cluster should be highly stable and chemically inert.
Abstract: Photoelectron spectroscopy revealed that a 20-atom gold cluster has an extremely large energy gap, which is even greater than that of C60, and an electron affinity comparable with that of C60. This observation suggests that the Au20 cluster should be highly stable and chemically inert. Using relativistic density functional calculations, we found that Au20 possesses a tetrahedral structure, which is a fragment of the face-centered cubic lattice of bulk gold with a small structural relaxation. Au20 is thus a unique molecule with atomic packing similar to that of bulk gold but with very different properties.

1,006 citations

Journal ArticleDOI
TL;DR: The observation of an all-boron fullerene-like cage cluster at B40(-) with an extremely low electron-binding energy is reported, by photoelectron spectroscopy, and theoretical calculations show that this arises from a cage structure with a large energy gap, but that a quasi-planar isomer of B40 (-) with two adjacent hexagonal holes is slightly more stable than the fullerenes structure.
Abstract: Main-group analogues to fullerene-C60 have been predicted theoretically many times. Now, B40− has been observed using photoelectron spectroscopy and, with its neutral analogue, B40, confirmed computationally. In contrast to fullerene-C60, the all-boron fullerene (or borospherene) features triangles, hexagons and heptagons, bonded uniformly by delocalized σ and π bonds over the cage surface.

679 citations

Journal ArticleDOI
TL;DR: Experimental and theoretical evidence is reported that small boron clusters prefer planar structures and exhibit aromaticity and antiaromaticity according to the Hückel rules, akin to planar hydrocarbons.
Abstract: An interesting feature of elemental boron and boron compounds is the occurrence of highly symmetric icosahedral clusters. The rich chemistry of boron is also dominated by three-dimensional cage structures. Despite its proximity to carbon in the periodic table, elemental boron clusters have been scarcely studied experimentally and their structures and chemical bonding have not been fully elucidated. Here we report experimental and theoretical evidence that small boron clusters prefer planar structures and exhibit aromaticity and antiaromaticity according to the Huckel rules, akin to planar hydrocarbons. Aromatic boron clusters possess more circular shapes whereas antiaromatic boron clusters are elongated, analogous to structural distortions of antiaromatic hydrocarbons. The planar boron clusters are thus the only series of molecules other than the hydrocarbons to exhibit size-dependent aromatic and antiaromatic behaviour and represent a new dimension of boron chemistry. The stable aromatic boron clusters may exhibit similar chemistries to that of benzene, such as forming sandwich-type metal compounds.

589 citations

Journal ArticleDOI
TL;DR: The fabrication of poly(vinylpyrrolidone)-supported single-layered rhodium nanosheets using a facile solvothermal method represents a class of metallic two-dimensional structures that might inspire further fundamental advances in physics, chemistry and material science.
Abstract: Single-layered materials such as graphene are well known, but metallic elements tend to favour three-dimensional clusters. Here the authors report the synthesis of rhodium nanosheets—a supported, single-layered metallic material with rare δ-bonding.

405 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate that isolated Au single atoms dispersed on iron oxide nanocrystallites (Au-1/FeOx) are much more sinteringresistant than Au nanostructures, and exhibit extremely high reaction stability for CO oxidation in a wide temperature range.
Abstract: Supported noble metal nanoparticles (including nanoclusters) are widely used in many industrial catalytic processes While the finely dispersed nanostructures are highly active, they are usually thermodynamically unstable and tend to aggregate or sinter at elevated temperatures This scenario is particularly true for supported nanogold catalysts because the gold nanostructures are easily sintered at high temperatures, under reaction conditions, or even during storage at ambient temperature Here, we demonstrate that isolated Au single atoms dispersed on iron oxide nanocrystallites (Au-1/FeOx) are much more sinteringresistant than Au nanostructures, and exhibit extremely high reaction stability for CO oxidation in a wide temperature range Theoretical studies revealed that the positively charged and surface-anchored Au1 atoms with high valent states formed significant covalent metal-support interactions (CMSIs), thus providing the ultra-stability and remarkable catalytic performance This work may provide insights and a new avenue for fabricating supported Au catalysts with ultra-high stability

390 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of current research activities that center on the shape-controlled synthesis of metal nanocrystals, including a brief introduction to nucleation and growth within the context of metal Nanocrystal synthesis, followed by a discussion of the possible shapes that aMetal nanocrystal might take under different conditions.
Abstract: Nanocrystals are fundamental to modern science and technology. Mastery over the shape of a nanocrystal enables control of its properties and enhancement of its usefulness for a given application. Our aim is to present a comprehensive review of current research activities that center on the shape-controlled synthesis of metal nanocrystals. We begin with a brief introduction to nucleation and growth within the context of metal nanocrystal synthesis, followed by a discussion of the possible shapes that a metal nanocrystal might take under different conditions. We then focus on a variety of experimental parameters that have been explored to manipulate the nucleation and growth of metal nanocrystals in solution-phase syntheses in an effort to generate specific shapes. We then elaborate on these approaches by selecting examples in which there is already reasonable understanding for the observed shape control or at least the protocols have proven to be reproducible and controllable. Finally, we highlight a number of applications that have been enabled and/or enhanced by the shape-controlled synthesis of metal nanocrystals. We conclude this article with personal perspectives on the directions toward which future research in this field might take.

4,927 citations

Journal ArticleDOI
TL;DR: The unique advances on ultrathin 2D nanomaterials are introduced, followed by the description of their composition and crystal structures, and the assortments of their synthetic methods are summarized.
Abstract: Since the discovery of mechanically exfoliated graphene in 2004, research on ultrathin two-dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter physics, material science, chemistry, and nanotechnology. Highlighting their compelling physical, chemical, electronic, and optical properties, as well as their various potential applications, in this Review, we summarize the state-of-art progress on the ultrathin 2D nanomaterials with a particular emphasis on their recent advances. First, we introduce the unique advances on ultrathin 2D nanomaterials, followed by the description of their composition and crystal structures. The assortments of their synthetic methods are then summarized, including insights on their advantages and limitations, alongside some recommendations on suitable characterization techniques. We also discuss in detail the utilization of these ultrathin 2D nanomaterials for wide ranges of potential applications among the electronics/optoelectronics, electrocat...

3,628 citations

Journal ArticleDOI
TL;DR: Nanoalloys of Group 11 (Cu, Ag, Au) 865 5.1.5.2.
Abstract: 5.1. Nanoalloys of Group 11 (Cu, Ag, Au) 865 5.1.1. Cu−Ag 866 5.1.2. Cu−Au 867 5.1.3. Ag−Au 870 5.1.4. Cu−Ag−Au 872 5.2. Nanoalloys of Group 10 (Ni, Pd, Pt) 872 5.2.1. Ni−Pd 872 * To whom correspondence should be addressed. Phone: +39010 3536214. Fax:+39010 311066. E-mail: ferrando@fisica.unige.it. † Universita di Genova. ‡ Argonne National Laboratory. § University of Birmingham. | As of October 1, 2007, Chemical Sciences and Engineering Division. Volume 108, Number 3

3,114 citations

Journal ArticleDOI
TL;DR: Recent advances in preparation, characterization, and catalytic performance of SACs are highlighted, with a focus on single atoms anchored to metal oxides, metal surfaces, and graphene, offering the potential for applications in a variety of industrial chemical reactions.
Abstract: Supported metal nanostructures are the most widely used type of heterogeneous catalyst in industrial processes. The size of metal particles is a key factor in determining the performance of such catalysts. In particular, because low-coordinated metal atoms often function as the catalytically active sites, the specific activity per metal atom usually increases with decreasing size of the metal particles. However, the surface free energy of metals increases significantly with decreasing particle size, promoting aggregation of small clusters. Using an appropriate support material that strongly interacts with the metal species prevents this aggregation, creating stable, finely dispersed metal clusters with a high catalytic activity, an approach industry has used for a long time. Nevertheless, practical supported metal catalysts are inhomogeneous and usually consist of a mixture of sizes from nanoparticles to subnanometer clusters. Such heterogeneity not only reduces the metal atom efficiency but also frequent...

3,051 citations

Journal ArticleDOI
TL;DR: This Review will compare the results obtained from different systems and try to give a picture on how different types of metal species work in different reactions and give perspectives on the future directions toward better understanding of the catalytic behavior of different metal entities in a unifying manner.
Abstract: Metal species with different size (single atoms, nanoclusters, and nanoparticles) show different catalytic behavior for various heterogeneous catalytic reactions. It has been shown in the literature that many factors including the particle size, shape, chemical composition, metal–support interaction, and metal–reactant/solvent interaction can have significant influences on the catalytic properties of metal catalysts. The recent developments of well-controlled synthesis methodologies and advanced characterization tools allow one to correlate the relationships at the molecular level. In this Review, the electronic and geometric structures of single atoms, nanoclusters, and nanoparticles will be discussed. Furthermore, we will summarize the catalytic applications of single atoms, nanoclusters, and nanoparticles for different types of reactions, including CO oxidation, selective oxidation, selective hydrogenation, organic reactions, electrocatalytic, and photocatalytic reactions. We will compare the results o...

2,700 citations