scispace - formally typeset
Search or ask a question
Author

Jun Liu

Bio: Jun Liu is an academic researcher from Sun Yat-sen University. The author has contributed to research in topics: Medicine & Biology. The author has an hindex of 100, co-authored 1165 publications receiving 73692 citations. Previous affiliations of Jun Liu include Shanghai Jiao Tong University & Genome Institute of Singapore.
Topics: Medicine, Biology, Population, Chemistry, Gene


Papers
More filters
Journal ArticleDOI
John T. Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando U. Garcia1, Nancy Young2, Barbara A. Foster3, Mike Moser3, Ellen Karasik3, Bryan Gillard3, Kimberley Ramsey3, Susan L. Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura A. Siminoff4, Heather M. Traino4, Maghboeba Mosavel4, Laura Barker4, Scott D. Jewell5, Daniel C. Rohrer5, Dan Maxim5, Dana Filkins5, Philip Harbach5, Eddie Cortadillo5, Bree Berghuis5, Lisa Turner5, Eric Hudson5, Kristin Feenstra5, Leslie H. Sobin6, James A. Robb6, Phillip Branton, Greg E. Korzeniewski6, Charles Shive6, David Tabor6, Liqun Qi6, Kevin Groch6, Sreenath Nampally6, Steve Buia6, Angela Zimmerman6, Anna M. Smith6, Robin Burges6, Karna Robinson6, Kim Valentino6, Deborah Bradbury6, Mark Cosentino6, Norma Diaz-Mayoral6, Mary Kennedy6, Theresa Engel6, Penelope Williams6, Kenyon Erickson, Kristin G. Ardlie7, Wendy Winckler7, Gad Getz7, Gad Getz8, David S. DeLuca7, MacArthur Daniel MacArthur7, MacArthur Daniel MacArthur8, Manolis Kellis7, Alexander Thomson7, Taylor Young7, Ellen Gelfand7, Molly Donovan7, Yan Meng7, George B. Grant7, Deborah C. Mash9, Yvonne Marcus9, Margaret J. Basile9, Jun Liu8, Jun Zhu10, Zhidong Tu10, Nancy J. Cox11, Dan L. Nicolae11, Eric R. Gamazon11, Hae Kyung Im11, Anuar Konkashbaev11, Jonathan K. Pritchard11, Jonathan K. Pritchard12, Matthew Stevens11, Timothée Flutre11, Xiaoquan Wen11, Emmanouil T. Dermitzakis13, Tuuli Lappalainen13, Roderic Guigó, Jean Monlong, Michael Sammeth, Daphne Koller14, Alexis Battle14, Sara Mostafavi14, Mark I. McCarthy15, Manual Rivas15, Julian Maller15, Ivan Rusyn16, Andrew B. Nobel16, Fred A. Wright16, Andrey A. Shabalin16, Mike Feolo17, Nataliya Sharopova17, Anne Sturcke17, Justin Paschal17, James M. Anderson17, Elizabeth L. Wilder17, Leslie Derr17, Eric D. Green17, Jeffery P. Struewing17, Gary F. Temple17, Simona Volpi17, Joy T. Boyer17, Elizabeth J. Thomson17, Mark S. Guyer17, Cathy Ng17, Assya Abdallah17, Deborah Colantuoni17, Thomas R. Insel17, Susan E. Koester17, Roger Little17, Patrick Bender17, Thomas Lehner17, Yin Yao17, Carolyn C. Compton17, Jimmie B. Vaught17, Sherilyn Sawyer17, Nicole C. Lockhart17, Joanne P. Demchok17, Helen F. Moore17 
TL;DR: The Genotype-Tissue Expression (GTEx) project is described, which will establish a resource database and associated tissue bank for the scientific community to study the relationship between genetic variation and gene expression in human tissues.
Abstract: Genome-wide association studies have identified thousands of loci for common diseases, but, for the majority of these, the mechanisms underlying disease susceptibility remain unknown. Most associated variants are not correlated with protein-coding changes, suggesting that polymorphisms in regulatory regions probably contribute to many disease phenotypes. Here we describe the Genotype-Tissue Expression (GTEx) project, which will establish a resource database and associated tissue bank for the scientific community to study the relationship between genetic variation and gene expression in human tissues.

6,545 citations

Journal ArticleDOI
17 May 2012-Nature
TL;DR: It is found that the boundaries of topological domains are enriched for the insulator binding protein CTCF, housekeeping genes, transfer RNAs and short interspersed element (SINE) retrotransposons, indicating that these factors may have a role in establishing the topological domain structure of the genome.
Abstract: The spatial organization of the genome is intimately linked to its biological function, yet our understanding of higher order genomic structure is coarse, fragmented and incomplete. In the nucleus of eukaryotic cells, interphase chromosomes occupy distinct chromosome territories, and numerous models have been proposed for how chromosomes fold within chromosome territories. These models, however, provide only few mechanistic details about the relationship between higher order chromatin structure and genome function. Recent advances in genomic technologies have led to rapid advances in the study of three-dimensional genome organization. In particular, Hi-C has been introduced as a method for identifying higher order chromatin interactions genome wide. Here we investigate the three-dimensional organization of the human and mouse genomes in embryonic stem cells and terminally differentiated cell types at unprecedented resolution. We identify large, megabase-sized local chromatin interaction domains, which we term 'topological domains', as a pervasive structural feature of the genome organization. These domains correlate with regions of the genome that constrain the spread of heterochromatin. The domains are stable across different cell types and highly conserved across species, indicating that topological domains are an inherent property of mammalian genomes. Finally, we find that the boundaries of topological domains are enriched for the insulator binding protein CTCF, housekeeping genes, transfer RNAs and short interspersed element (SINE) retrotransposons, indicating that these factors may have a role in establishing the topological domain structure of the genome.

5,774 citations

Journal ArticleDOI
Kristin G. Ardlie, David S. DeLuca, Ayellet V. Segrè, Timothy J. Sullivan, Taylor Young, Ellen Gelfand, Casandra A. Trowbridge, Julian Maller, Taru Tukiainen, Monkol Lek, Lucas D. Ward, Pouya Kheradpour, Benjamin Iriarte, Yan Meng, Cameron D. Palmer, Tõnu Esko, Wendy Winckler, Joel N. Hirschhorn, Manolis Kellis, Daniel G. MacArthur, Gad Getz, Andrey A. Shabalin, Gen Li, Yi-Hui Zhou, Andrew B. Nobel, Ivan Rusyn, Fred A. Wright, Tuuli Lappalainen, Pedro G. Ferreira, Halit Ongen, Manuel A. Rivas, Alexis Battle, Sara Mostafavi, Jean Monlong, Michael Sammeth, Marta Melé, Ferran Reverter, Jakob M. Goldmann, Daphne Koller, Roderic Guigó, Mark I. McCarthy, Emmanouil T. Dermitzakis, Eric R. Gamazon, Hae Kyung Im, Anuar Konkashbaev, Dan L. Nicolae, Nancy J. Cox, Timothée Flutre, Xiaoquan Wen, Matthew Stephens, Jonathan K. Pritchard, Zhidong Tu, Bin Zhang, Tao Huang, Quan Long, Luan Lin, Jialiang Yang, Jun Zhu, Jun Liu, Amanda Brown, Bernadette Mestichelli, Denee Tidwell, Edmund Lo, Mike Salvatore, Saboor Shad, Jeffrey A. Thomas, John T. Lonsdale, Michael T. Moser, Bryan Gillard, Ellen Karasik, Kimberly Ramsey, Christopher Choi, Barbara A. Foster, John Syron, Johnell Fleming, Harold Magazine, Rick Hasz, Gary Walters, Jason Bridge, Mark Miklos, Susan L. Sullivan, Laura Barker, Heather M. Traino, Maghboeba Mosavel, Laura A. Siminoff, Dana R. Valley, Daniel C. Rohrer, Scott D. Jewell, Philip A. Branton, Leslie H. Sobin, Mary Barcus, Liqun Qi, Jeffrey McLean, Pushpa Hariharan, Ki Sung Um, Shenpei Wu, David Tabor, Charles Shive, Anna M. Smith, Stephen A. Buia, Anita H. Undale, Karna Robinson, Nancy Roche, Kimberly M. Valentino, Angela Britton, Robin Burges, Debra Bradbury, Kenneth W. Hambright, John Seleski, Greg E. Korzeniewski, Kenyon Erickson, Yvonne Marcus, Jorge Tejada, Mehran Taherian, Chunrong Lu, Margaret J. Basile, Deborah C. Mash, Simona Volpi, Jeffery P. Struewing, Gary F. Temple, Joy T. Boyer, Deborah Colantuoni, Roger Little, Susan E. Koester, Latarsha J. Carithers, Helen M. Moore, Ping Guan, Carolyn C. Compton, Sherilyn Sawyer, Joanne P. Demchok, Jimmie B. Vaught, Chana A. Rabiner, Nicole C. Lockhart 
08 May 2015-Science
TL;DR: The landscape of gene expression across tissues is described, thousands of tissue-specific and shared regulatory expression quantitative trait loci (eQTL) variants are cataloged, complex network relationships are described, and signals from genome-wide association studies explained by eQTLs are identified.
Abstract: Understanding the functional consequences of genetic variation, and how it affects complex human disease and quantitative traits, remains a critical challenge for biomedicine. We present an analysi...

4,418 citations

Journal ArticleDOI
23 Aug 1991-Cell
TL;DR: The results suggest that calcineurin is involved in a common step associated with T cell receptor and IgE receptor signaling pathways and that cyclophilin and FKBP mediate the actions of CsA and Fk506 by forming drug-dependent complexes with and altering the activity of calcineURin-calmodulin.

3,968 citations

Journal ArticleDOI
TL;DR: Tumor Immune Estimation Resource (TIMER) is presented to comprehensively investigate molecular characterization of tumor-immune interactions and provides a user-friendly web interface for dynamic analysis and visualization of these associations, which will be of broad utilities to cancer researchers.
Abstract: Recent clinical successes of cancer immunotherapy necessitate the investigation of the interaction between malignant cells and the host immune system. However, elucidation of complex tumor-immune interactions presents major computational and experimental challenges. Here, we present Tumor Immune Estimation Resource (TIMER; cistrome.shinyapps.io/timer) to comprehensively investigate molecular characterization of tumor-immune interactions. Levels of six tumor-infiltrating immune subsets are precalculated for 10,897 tumors from 32 cancer types. TIMER provides 6 major analytic modules that allow users to interactively explore the associations between immune infiltrates and a wide spectrum of factors, including gene expression, clinical outcomes, somatic mutations, and somatic copy number alterations. TIMER provides a user-friendly web interface for dynamic analysis and visualization of these associations, which will be of broad utilities to cancer researchers. Cancer Res; 77(21); e108-10. ©2017 AACR.

3,236 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original.
Abstract: The BLAST programs are widely used tools for searching protein and DNA databases for sequence similarities. For protein comparisons, a variety of definitional, algorithmic and statistical refinements described here permits the execution time of the BLAST programs to be decreased substantially while enhancing their sensitivity to weak similarities. A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original. In addition, a method is introduced for automatically combining statistically significant alignments produced by BLAST into a position-specific score matrix, and searching the database using this matrix. The resulting Position-Specific Iterated BLAST (PSIBLAST) program runs at approximately the same speed per iteration as gapped BLAST, but in many cases is much more sensitive to weak but biologically relevant sequence similarities. PSI-BLAST is used to uncover several new and interesting members of the BRCT superfamily.

70,111 citations

Journal ArticleDOI
TL;DR: The sensitivity of the commonly used progressive multiple sequence alignment method has been greatly improved and modifications are incorporated into a new program, CLUSTAL W, which is freely available.
Abstract: The sensitivity of the commonly used progressive multiple sequence alignment method has been greatly improved for the alignment of divergent protein sequences. Firstly, individual weights are assigned to each sequence in a partial alignment in order to down-weight near-duplicate sequences and up-weight the most divergent ones. Secondly, amino acid substitution matrices are varied at different alignment stages according to the divergence of the sequences to be aligned. Thirdly, residue-specific gap penalties and locally reduced gap penalties in hydrophilic regions encourage new gaps in potential loop regions rather than regular secondary structure. Fourthly, positions in early alignments where gaps have been opened receive locally reduced gap penalties to encourage the opening up of new gaps at these positions. These modifications are incorporated into a new program, CLUSTAL W which is freely available.

63,427 citations

Journal ArticleDOI
TL;DR: This work presents DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates, which enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression.
Abstract: In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We present DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression. The DESeq2 package is available at http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html .

47,038 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Posted ContentDOI
17 Nov 2014-bioRxiv
TL;DR: This work presents DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates, which enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression.
Abstract: In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-Seq data, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We present DESeq2, a method for differential analysis of count data. DESeq2 uses shrinkage estimation for dispersions and fold changes to improve stability and interpretability of the estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression and facilitates downstream tasks such as gene ranking and visualization. DESeq2 is available as an R/Bioconductor package.

17,014 citations