scispace - formally typeset
Search or ask a question
Author

Jun Lu

Bio: Jun Lu is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Medicine & Materials science. The author has an hindex of 135, co-authored 1526 publications receiving 99767 citations. Previous affiliations of Jun Lu include Drexel University & Argonne National Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: Li et al. as discussed by the authors investigated the effects of Cr substitution on the structure and electrochemical properties of LiFe1−xCrxO2·Li2MnO3 composite.

35 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the reactivity of LiO2 to water and showed that the reaction is due to the more exothermic nature of the formation of LiOH and O2 compared with corresponding reactions of NaO2 and KO2.
Abstract: Fundamental understanding of reactions of lithium peroxides and superoxides is essential for the development of Li–O2 batteries. In this context, an investigation is reported of the hydrolysis of lithium superoxide, which has recently been synthesized in a Li–O2 battery. Surprisingly, the hydrolysis of solid LiO2 is significantly different from that of NaO2 and KO2. Unlike KO2 and NaO2, the hydrolysis of LiO2 does not produce H2O2. Similarly, the reactivity of Li2O2 toward water differs from LiO2, in that Li2O2 results in H2O2 as a product. The difference in the LiO2 reactivity with water is due to the more exothermic nature of the formation of LiOH and O2 compared with the corresponding reactions of NaO2 and KO2. We also show that a titration method used in this study, based on reaction of the discharge product with a Ti(IV)OSO4 solution, provides a useful diagnostic technique to provide information on the composition of a discharge product in a Li–O2 battery.

35 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used atomic layer deposition on both MgO (1 0 0 0) and alpha-Al2O3 (0 0 1) substrates at temperatures as low as 200 degrees C.

34 citations

Journal ArticleDOI
16 Mar 2017-Blood
TL;DR: It is demonstrated that miR-125b significantly enhances MLL-AF9-driven AML in vivo, and the resultant leukemia is partially dependent on continued overexpression ofMiR- 125b promotes AML cell expansion and suppresses apoptosis involving a non-cell-intrinsic mechanism.

34 citations


Cited by
More filters
Journal ArticleDOI
04 Mar 2011-Cell
TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.

51,099 citations

Journal ArticleDOI
TL;DR: The Gene Set Enrichment Analysis (GSEA) method as discussed by the authors focuses on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation.
Abstract: Although genomewide RNA expression analysis has become a routine tool in biomedical research, extracting biological insight from such information remains a major challenge. Here, we describe a powerful analytical method called Gene Set Enrichment Analysis (GSEA) for interpreting gene expression data. The method derives its power by focusing on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation. We demonstrate how GSEA yields insights into several cancer-related data sets, including leukemia and lung cancer. Notably, where single-gene analysis finds little similarity between two independent studies of patient survival in lung cancer, GSEA reveals many biological pathways in common. The GSEA method is embodied in a freely available software package, together with an initial database of 1,325 biologically defined gene sets.

34,830 citations

Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations