scispace - formally typeset
Search or ask a question
Author

Jun Lu

Bio: Jun Lu is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Medicine & Materials science. The author has an hindex of 135, co-authored 1526 publications receiving 99767 citations. Previous affiliations of Jun Lu include Drexel University & Argonne National Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: High-power, long-life carbon-coated TiO2 microsphere electrodes were synthesized by a hydrothermal method for sodium ion batteries, and the electrochemical properties were evaluated as a function of carbon content.
Abstract: High-power, long-life carbon-coated TiO2 microsphere electrodes were synthesized by a hydrothermal method for sodium ion batteries, and the electrochemical properties were evaluated as a function of carbon content. The carbon coating, introduced by sucrose addition, had an effect of suppressing the growth of the TiO2 primary crystallites during calcination. The carbon coated TiO2 (sucrose 20 wt % coated) electrode exhibited excellent cycle retention during 50 cycles (100%) and superior rate capability up to a 30 C rate at room temperature. This cell delivered a high discharge capacity of 155 mAh g(composite)(-1) at 0.1 C, 149 mAh g(composite)(-1) at 1 C, and 82.7 mAh g(composite)(-1) at a 10 C rate, respectively.

211 citations

Journal ArticleDOI
Fumio Abe, H. Akimoto1, A. Akopian2, M. G. Albrow3  +471 moreInstitutions (37)
TL;DR: In this article, the authors present a study of $J/\ensuremath{\psi}$ and $ENSSI(2S)$ production in collisions, at the CDF detector at Fermilab.
Abstract: We present a study of $J/\ensuremath{\psi}$ and $\ensuremath{\psi}(2S)$ production in $p\overline{p}$ collisions, at $\sqrt{s}\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}1.8\mathrm{TeV}$ with the CDF detector at Fermilab. The $J/\ensuremath{\psi}$ and $\ensuremath{\psi}(2S)$ mesons are reconstructed using their ${\ensuremath{\mu}}^{+}{\ensuremath{\mu}}^{\ensuremath{-}}$ decay modes. We have measured the inclusive production cross section for both mesons as a function of their transverse momentum in the central region, $|\ensuremath{\eta}|l0.6$. We also measure the fraction of these events originating from $b$ hadrons. We thus extract individual cross sections for $J/\ensuremath{\psi}$ and $\ensuremath{\psi}(2S)$ mesons from $b$-quark decays and prompt production. We find a large excess (approximately a factor of 50) of direct $\ensuremath{\psi}(2S)$ production compared with predictions from the color singlet model.

210 citations

Journal ArticleDOI
TL;DR: A Staphylococcus aureus antisense knockdown strategy is adapted to genetically identify the cell division Z ring components—FtsA, FtsZ, and FtsW—as β-lactam susceptibility determinants of methicillin-resistant S. aureUS to support a target-based approach to develop synergistic drug combinations to combat MRSA with improved efficacy and reduced potential for drug resistance.
Abstract: Despite the need for new antibiotics to treat drug-resistant bacteria, current clinical combinations are largely restricted to β-lactam antibiotics paired with β-lactamase inhibitors. We have adapted a Staphylococcus aureus antisense knockdown strategy to genetically identify the cell division Z ring components-FtsA, FtsZ, and FtsW-as β-lactam susceptibility determinants of methicillin-resistant S. aureus (MRSA). We demonstrate that the FtsZ-specific inhibitor PC190723 acts synergistically with β-lactam antibiotics in vitro and in vivo and that this combination is efficacious in a murine model of MRSA infection. Fluorescence microscopy localization studies reveal that synergy between these agents is likely to be elicited by the concomitant delocalization of their cognate drug targets (FtsZ and PBP2) in MRSA treated with PC190723. A 2.0 A crystal structure of S. aureus FtsZ in complex with PC190723 identifies the compound binding site, which corresponds to the predominant location of mutations conferring resistance to PC190723 (PC190723(R)). Although structural studies suggested that these drug resistance mutations may be difficult to combat through chemical modification of PC190723, combining PC190723 with the β-lactam antibiotic imipenem markedly reduced the spontaneous frequency of PC190723(R) mutants. Multiple MRSA PC190723(R) FtsZ mutants also displayed attenuated virulence and restored susceptibility to β-lactam antibiotics in vitro and in a mouse model of imipenem efficacy. Collectively, these data support a target-based approach to rationally develop synergistic combination agents that mitigate drug resistance and effectively treat MRSA infections.

209 citations


Cited by
More filters
Journal ArticleDOI
04 Mar 2011-Cell
TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.

51,099 citations

Journal ArticleDOI
TL;DR: The Gene Set Enrichment Analysis (GSEA) method as discussed by the authors focuses on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation.
Abstract: Although genomewide RNA expression analysis has become a routine tool in biomedical research, extracting biological insight from such information remains a major challenge. Here, we describe a powerful analytical method called Gene Set Enrichment Analysis (GSEA) for interpreting gene expression data. The method derives its power by focusing on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation. We demonstrate how GSEA yields insights into several cancer-related data sets, including leukemia and lung cancer. Notably, where single-gene analysis finds little similarity between two independent studies of patient survival in lung cancer, GSEA reveals many biological pathways in common. The GSEA method is embodied in a freely available software package, together with an initial database of 1,325 biologically defined gene sets.

34,830 citations

Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations