scispace - formally typeset
Search or ask a question
Author

Jun Lu

Bio: Jun Lu is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Medicine & Materials science. The author has an hindex of 135, co-authored 1526 publications receiving 99767 citations. Previous affiliations of Jun Lu include Drexel University & Argonne National Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: Solid nanocomposite electrolytes exhibit superior performance to the conventional organic electrolytes with regard to safety and cycle-life and will provide new avenues for the rational engineering of advanced Li-ion batteries and other electrochemical devices.
Abstract: The development of safe, stable, and long-life Li-ion batteries is being intensively pursued to enable the electrification of transportation and intelligent grid applications. Here, we report a new solid-state Li-ion battery technology, using a solid nanocomposite electrolyte composed of porous silica matrices with in situ immobilizing Li+-conducting ionic liquid, anode material of MCMB, and cathode material of LiCoO2, LiNi1/3Co1/3Mn1/3O2, or LiFePO4. An injection printing method is used for the electrode/electrolyte preparation. Solid nanocomposite electrolytes exhibit superior performance to the conventional organic electrolytes with regard to safety and cycle-life. They also have a transparent glassy structure with high ionic conductivity and good mechanical strength. Solid-state full cells tested with the various cathodes exhibited high specific capacities, long cycling stability, and excellent high temperature performance. This solid-state battery technology will provide new avenues for the rational ...

121 citations

Journal ArticleDOI
TL;DR: In this paper, a self-assembly V2O5·nH2O nanoflakes with ultrathin flower petals were obtained after heat treatment at 300 °C.
Abstract: The high-capacity cathode material V2O5·nH2O has attracted considerable attention for metal ion batteries due to the multielectron redox reaction during electrochemical processes. It has an expanded layer structure, which can host large ions or multivalent ions. However, structural instability and poor electronic and ionic conductivities greatly handicap its application. Here, in cell tests, self-assembly V2O5·nH2O nanoflakes shows excellent electrochemical performance with either monovalent or multivalent cation intercalation. They are directly grown on a 3D conductive stainless steel mesh substrate via a simple and green hydrothermal method. Well-layered nanoflakes are obtained after heat treatment at 300 °C (V2O5·0.3H2O). Nanoflakes with ultrathin flower petals deliver a stable capacity of 250 mA h g−1 in a Li-ion cell, 110 mA h g−1 in a Na-ion cell, and 80 mA h g−1 in an Al-ion cell in their respective potential ranges (2.0–4.0 V for Li and Na-ion batteries and 0.1–2.5 V for Al-ion battery) after 100 cycles.

121 citations

Journal ArticleDOI
TL;DR: In this paper, the structure of the Ni2MnGa and Ni2mn1.8 thin films has been characterized by molecular beam epitaxy on GaAs (001) substrates with Sc0.3Er0.7As interlayers.
Abstract: Epitaxial Ni2MnGa and Ni2Mn1.2Ga0.8 thin films have been grown by molecular beam epitaxy on GaAs (001) substrates with Sc0.3Er0.7As interlayers. Structural characterization of as-grown films confirms the epitaxially stabilized single crystal structure of the films and indicates that the films grow pseudomorphically on GaAs (001) substrates in a tetragonal structure (a=b=5.65 A, c=6.18 A). The films are ferromagnetic at room temperature with coercivity of ∼50 Oe, saturation magnetization of ∼250 emu/cm3, and weak in-plane magnetic anisotropy. The Curie temperature of the films is found to be ∼340 K. However, while the films were attached to the substrate martensitic phase transformations were not observed. In order to observe martensitic phase transformations, free-standing Ni2MnGa bridges and cantilevers were fabricated using front and back side photolithography together with a combination of dry and wet etching. After removal of the substrate, the free-standing bridges and cantilevers showed a unique temperature dependent shape. Observation using a polarized-light optical microscope during repeated thermocycling showed large movement of the cantilevers, confirming a two-way shape memory effect in the free-standing films. Using 100 μm long free-standing bridges, field induced strain or the ferromagnetic shape memory effect was observed in a stoichiometric Ni2MnGa sample at 135 K with the magnetic fields perpendicular to the sample surface.

121 citations

Journal ArticleDOI
TL;DR: It is demonstrated that ultrasmall (∼5 nm) iron selenide (FeSe2) nanoparticles exhibited a remarkable activity for sodium-ion storage and exhibited a large specific capacity, high rate capability, and excellent cycling stability at both low and high current rates by virtue of their advantageous nanosizing effect.
Abstract: Sodium-ion batteries are potential low-cost alternatives to current lithium-ion technology, yet their performances still fall short of expectation due to the lack of suitable electrode materials with large capacity, long-term cycling stability, and high-rate performance. In this work, we demonstrated that ultrasmall (∼5 nm) iron selenide (FeSe2) nanoparticles exhibited a remarkable activity for sodium-ion storage. They were prepared from a high-temperature solution method with a narrow size distribution and high yield and could be readily redispersed in nonpolar organic solvents. In ether-based electrolyte, FeSe2 nanoparticles exhibited a large specific capacity of ∼500 mAh/g (close to the theoretical limit), high rate capability with ∼250 mAh/g retained at 10 A/g, and excellent cycling stability at both low and high current rates by virtue of their advantageous nanosizing effect. Full sodium-ion batteries were also constructed from coupling FeSe2 with NASICON-type Na3V2(PO4)3 cathode and demonstrated imp...

120 citations

Journal ArticleDOI
TL;DR: The discovery of a new hexagonal Mo2Ga2C phase, wherein two Ga layers – instead of one – are stacked in a simple hexagonal arrangement in between Mo2C layers is reported.

119 citations


Cited by
More filters
Journal ArticleDOI
04 Mar 2011-Cell
TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.

51,099 citations

Journal ArticleDOI
TL;DR: The Gene Set Enrichment Analysis (GSEA) method as discussed by the authors focuses on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation.
Abstract: Although genomewide RNA expression analysis has become a routine tool in biomedical research, extracting biological insight from such information remains a major challenge. Here, we describe a powerful analytical method called Gene Set Enrichment Analysis (GSEA) for interpreting gene expression data. The method derives its power by focusing on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation. We demonstrate how GSEA yields insights into several cancer-related data sets, including leukemia and lung cancer. Notably, where single-gene analysis finds little similarity between two independent studies of patient survival in lung cancer, GSEA reveals many biological pathways in common. The GSEA method is embodied in a freely available software package, together with an initial database of 1,325 biologically defined gene sets.

34,830 citations

Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations