scispace - formally typeset
Search or ask a question
Author

Jun Lu

Bio: Jun Lu is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Medicine & Materials science. The author has an hindex of 135, co-authored 1526 publications receiving 99767 citations. Previous affiliations of Jun Lu include Drexel University & Argonne National Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that most retinal ganglion cells that project to the SCN express the photopigment melanopsin, which mediates circadian entrainment in mice.
Abstract: All known eukaryotic organisms exhibit physiological and behavioral rhythms termed circadian rhythms that cycle with a near-24-hour period; in mammals, light is the most potent stimulus for entraining endogenous rhythms to the daily light cycle. Photic information is transmitted via the retinohypothalamic tract (RHT) to the suprachiasmatic nucleus (SCN) in the hypothalamus, where circadian rhythms are generated, but the retinal photopigment that mediates circadian entrainment has remained elusive. Here we show that most retinal ganglion cells (RGCs) that project to the SCN express the photopigment melanopsin.

557 citations

Journal ArticleDOI
TL;DR: It is concluded that the tuberomammillary nucleus (TMN) is a discrete neural locus that has a key role in the sedative response to GABAergic anesthetics.
Abstract: We investigated the role of regionally discrete GABA (gamma-aminobutyric acid) receptors in the sedative response to pharmacological agents that act on GABA(A) receptors (muscimol, propofol and pentobarbital; 'GABAergic agents') and to ketamine, a general anesthetic that does not affect GABA(A) receptors. Behavioral studies in rats showed that the sedative response to centrally administered GABAergic agents was attenuated by the GABA(A) receptor antagonist gabazine (systemically administered). The sedative response to ketamine, by contrast, was unaffected by gabazine. Using c-Fos as a marker of neuronal activation, we identified a possible role for the tuberomammillary nucleus (TMN): when gabazine was microinjected directly into the TMN, it attenuated the sedative response to GABAergic agents. Furthermore, the GABA(A) receptor agonist muscimol produced a dose-dependent sedation when it was administered into the TMN. We conclude that the TMN is a discrete neural locus that has a key role in the sedative response to GABAergic anesthetics.

549 citations

Journal ArticleDOI
TL;DR: In this paper, a copper-incorporated crystalline 3,4,9,10-perylenetetetracarboxylic dianhydride was used to synthesize ammonia from nitrate ions.
Abstract: Ammonia (NH3) is essential for modern agriculture and industry and is a potential energy carrier. NH3 is traditionally synthesized by the Haber–Bosch process at high temperature and pressure. The high-energy input of this process has motivated research into electrochemical NH3 synthesis via nitrogen (N2)–water reactions under ambient conditions. However, the future of this low-cost process is compromised by the low yield rate and poor selectivity, ascribed to the inert N≡N bond and ultralow solubility of N2. Obtaining NH3 directly from non-N2 sources could circumvent these challenges. Here we report the eight-electron direct electroreduction of nitrate to NH3 catalysed by copper-incorporated crystalline 3,4,9,10-perylenetetracarboxylic dianhydride. The catalyst exhibits an NH3 production rate of 436 ± 85 μg h−1 cm−2 and a maximum Faradaic efficiency of 85.9% at −0.4 V versus a reversible hydrogen electrode. This notable performance is achieved by the catalyst regulating the transfer of protons and/or electrons to the copper centres and suppressing hydrogen production. Electrochemically reducing nitrogen-containing molecules could provide less energy-intense routes to produce ammonia than the traditional Haber–Bosh process. Here the authors use a catalyst comprising Cu embedded in an organic molecular solid to synthesize ammonia from nitrate ions.

514 citations

Journal ArticleDOI
TL;DR: It is shown that excitotoxic lesions of the DMH reduce circadian rhythms of wakefulness, feeding, locomotor activity, and serum corticosteroid levels by 78-89% while also reducing their overall daily levels.
Abstract: The suprachiasmatic nucleus (SCN) contains the brain's circadian pacemaker, but mechanisms by which it controls circadian rhythms of sleep and related behaviors are poorly understood. Previous anatomic evidence has implicated the dorsomedial hypothalamic nucleus (DMH) in circadian control of sleep, but this hypothesis remains untested. We now show that excitotoxic lesions of the DMH reduce circadian rhythms of wakefulness, feeding, locomotor activity, and serum corticosteroid levels by 78-89% while also reducing their overall daily levels. We also show that the DMH receives both direct and indirect SCN inputs and sends a mainly GABAergic projection to the sleep-promoting ventrolateral preoptic nucleus, and a mainly glutamate-thyrotropin-releasing hormone projection to the wake-promoting lateral hypothalamic area, including orexin (hypocretin) neurons. Through these pathways, the DMH may influence a wide range of behavioral circadian rhythms.

512 citations

Journal ArticleDOI
TL;DR: This multistage processor provides the animal with flexibility so that environmental cues, such as food availability, ambient temperature and social interactions, can be integrated with the clock signal to sculpt an adaptive pattern of rhythmic daily activities that maximize the chances of survival and reproduction.

509 citations


Cited by
More filters
Journal ArticleDOI
04 Mar 2011-Cell
TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.

51,099 citations

Journal ArticleDOI
TL;DR: The Gene Set Enrichment Analysis (GSEA) method as discussed by the authors focuses on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation.
Abstract: Although genomewide RNA expression analysis has become a routine tool in biomedical research, extracting biological insight from such information remains a major challenge. Here, we describe a powerful analytical method called Gene Set Enrichment Analysis (GSEA) for interpreting gene expression data. The method derives its power by focusing on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation. We demonstrate how GSEA yields insights into several cancer-related data sets, including leukemia and lung cancer. Notably, where single-gene analysis finds little similarity between two independent studies of patient survival in lung cancer, GSEA reveals many biological pathways in common. The GSEA method is embodied in a freely available software package, together with an initial database of 1,325 biologically defined gene sets.

34,830 citations

Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations