scispace - formally typeset
Search or ask a question
Author

Jun R. Huh

Bio: Jun R. Huh is an academic researcher from Harvard University. The author has contributed to research in topics: Cellular differentiation & Bile acid. The author has an hindex of 27, co-authored 60 publications receiving 6392 citations. Previous affiliations of Jun R. Huh include University of Massachusetts Medical School & California Institute of Technology.


Papers
More filters
Journal ArticleDOI
28 Jun 2006-Nature
TL;DR: Removal of Drosophila PINK1 homologue function results in male sterility, apoptotic muscle degeneration, defects in mitochondrial morphology and increased sensitivity to multiple stresses including oxidative stress, which underscores the importance of mitochondrial dysfunction as a central mechanism of Parkinson's disease pathogenesis.
Abstract: Parkinson's disease is the second most common neurodegenerative disorder and is characterized by the degeneration of dopaminergic neurons in the substantia nigra. Mitochondrial dysfunction has been implicated as an important trigger for Parkinson's disease-like pathogenesis because exposure to environmental mitochondrial toxins leads to Parkinson's disease-like pathology. Recently, multiple genes mediating familial forms of Parkinson's disease have been identified, including PTEN-induced kinase 1 (PINK1 ; PARK6 ) and parkin (PARK2 ), which are also associated with sporadic forms of Parkinson's disease. PINK1 encodes a putative serine/threonine kinase with a mitochondrial targeting sequence. So far, no in vivo studies have been reported for pink1 in any model system. Here we show that removal of Drosophila PINK1 homologue (CG4523; hereafter called pink1) function results in male sterility, apoptotic muscle degeneration, defects in mitochondrial morphology and increased sensitivity to multiple stresses including oxidative stress. Pink1 localizes to mitochondria, and mitochondrial cristae are fragmented in pink1 mutants. Expression of human PINK1 in the Drosophila testes restores male fertility and normal mitochondrial morphology in a portion of pink1 mutants, demonstrating functional conservation between human and Drosophila Pink1. Loss of Drosophila parkin shows phenotypes similar to loss of pink1 function. Notably, overexpression of parkin rescues the male sterility and mitochondrial morphology defects of pink1 mutants, whereas double mutants removing both pink1 and parkin function show muscle phenotypes identical to those observed in either mutant alone. These observations suggest that pink1 and parkin function, at least in part, in the same pathway, with pink1 functioning upstream of parkin. The role of the pink1–parkin pathway in regulating mitochondrial function underscores the importance of mitochondrial dysfunction as a central mechanism of Parkinson's disease pathogenesis.

1,664 citations

Journal ArticleDOI
26 Feb 2016-Science
TL;DR: In this paper, the authors used both genetic mutants and blocking antibodies in mice to find that retinoic acid receptor-related orphan nuclear receptor gamma t (RORγt)-dependent effector T lymphocytes [for example, T helper 17 (TH17) cells] and the effector cytokine interleukin 17a (IL-17a) are required in mothers for MIA-induced behavioral abnormalities in offspring.
Abstract: Viral infection during pregnancy has been correlated with increased frequency of autism spectrum disorder (ASD) in offspring. This observation has been modeled in rodents subjected to maternal immune activation (MIA). The immune cell populations critical in the MIA model have not been identified. Using both genetic mutants and blocking antibodies in mice, we show that retinoic acid receptor-related orphan nuclear receptor gamma t (RORγt)-dependent effector T lymphocytes [for example, T helper 17 (TH17) cells] and the effector cytokine interleukin-17a (IL-17a) are required in mothers for MIA-induced behavioral abnormalities in offspring. We find that MIA induces an abnormal cortical phenotype, which is also dependent on maternal IL-17a, in the fetal brain. Our data suggest that therapeutic targeting of TH17 cells in susceptible pregnant mothers may reduce the likelihood of bearing children with inflammation-induced ASD-like phenotypes.

755 citations

Journal ArticleDOI
27 Nov 2019-Nature
TL;DR: Two derivatives of lithocholic acid are revealed that act as regulators of T helper cells that express IL-17a and regulatory T cells, thus influencing host immune responses.
Abstract: Bile acids are abundant in the mammalian gut, where they undergo bacteria-mediated transformation to generate a large pool of bioactive molecules. Although bile acids are known to affect host metabolism, cancer progression and innate immunity, it is unknown whether they affect adaptive immune cells such as T helper cells that express IL-17a (TH17 cells) or regulatory T cells (Treg cells). Here we screen a library of bile acid metabolites and identify two distinct derivatives of lithocholic acid (LCA), 3-oxoLCA and isoalloLCA, as T cell regulators in mice. 3-OxoLCA inhibited the differentiation of TH17 cells by directly binding to the key transcription factor retinoid-related orphan receptor-γt (RORγt) and isoalloLCA increased the differentiation of Treg cells through the production of mitochondrial reactive oxygen species (mitoROS), which led to increased expression of FOXP3. The isoalloLCA-mediated enhancement of Treg cell differentiation required an intronic Foxp3 enhancer, the conserved noncoding sequence (CNS) 3; this represents a mode of action distinct from that of previously identified metabolites that increase Treg cell differentiation, which require CNS1. The administration of 3-oxoLCA and isoalloLCA to mice reduced TH17 cell differentiation and increased Treg cell differentiation, respectively, in the intestinal lamina propria. Our data suggest mechanisms through which bile acid metabolites control host immune responses, by directly modulating the balance of TH17 and Treg cells. Screening of a library of bile acid metabolites revealed two derivatives of lithocholic acid that act as regulators of T helper cells that express IL-17a and regulatory T cells, thus influencing host immune responses.

537 citations

Journal ArticleDOI
28 Apr 2011-Nature
TL;DR: In this article, the cardiac glycoside digoxin was identified as a specific inhibitor of RORγt transcriptional activity, which is required for induction of IL-17 transcription and for the manifestation of T(H)17-dependent autoimmune disease in mice.
Abstract: CD4(+) T helper lymphocytes that express interleukin-17 (T(H)17 cells) have critical roles in mouse models of autoimmunity, and there is mounting evidence that they also influence inflammatory processes in humans. Genome-wide association studies in humans have linked genes involved in T(H)17 cell differentiation and function with susceptibility to Crohn's disease, rheumatoid arthritis and psoriasis. Thus, the pathway towards differentiation of T(H)17 cells and, perhaps, of related innate lymphoid cells with similar effector functions, is an attractive target for therapeutic applications. Mouse and human T(H)17 cells are distinguished by expression of the retinoic acid receptor-related orphan nuclear receptor RORγt, which is required for induction of IL-17 transcription and for the manifestation of T(H)17-dependent autoimmune disease in mice. By performing a chemical screen with an insect cell-based reporter system, we identified the cardiac glycoside digoxin as a specific inhibitor of RORγt transcriptional activity. Digoxin inhibited murine T(H)17 cell differentiation without affecting differentiation of other T cell lineages and was effective in delaying the onset and reducing the severity of autoimmune disease in mice. At high concentrations, digoxin is toxic for human cells, but non-toxic synthetic derivatives 20,22-dihydrodigoxin-21,23-diol and digoxin-21-salicylidene specifically inhibited induction of IL-17 in human CD4(+) T cells. Using these small-molecule compounds, we demonstrate that RORγt is important for the maintenance of IL-17 expression in mouse and human effector T cells. These data indicate that derivatives of digoxin can be used as chemical templates for the development of RORγt-targeted therapeutic agents that attenuate inflammatory lymphocyte function and autoimmune disease.

497 citations

Journal ArticleDOI
28 Sep 2017-Nature
TL;DR: It is shown that MIA phenotypes in offspring require maternal intestinal bacteria that promote TH17 cell differentiation, and defined gut commensal bacteria with a propensity to induce TH17 cells may increase the risk of neurodevelopmental disorders in the offspring of pregnant mothers undergoing immune system activation owing to infections or autoinflammatory syndromes.
Abstract: Maternal immune activation (MIA) contributes to behavioural abnormalities associated with neurodevelopmental disorders in both primate and rodent offspring. In humans, epidemiological studies suggest that exposure of fetuses to maternal inflammation increases the likelihood of developing autism spectrum disorder. In pregnant mice, interleukin-17a (IL-17a) produced by T helper 17 (TH17) cells (CD4+ T helper effector cells involved in multiple inflammatory conditions) induces behavioural and cortical abnormalities in the offspring exposed to MIA. However, it is unclear whether other maternal factors are required to promote MIA-associated phenotypes. Moreover, the underlying mechanisms by which MIA leads to T cell activation with increased IL-17a in the maternal circulation are not well understood. Here we show that MIA phenotypes in offspring require maternal intestinal bacteria that promote TH17 cell differentiation. Pregnant mice that had been colonized with mouse commensal segmented filamentous bacteria or human commensal bacteria that induce intestinal TH17 cells were more likely to produce offspring with MIA-associated abnormalities. We also show that small intestine dendritic cells from pregnant, but not from non-pregnant, females secrete IL-1β, IL-23 and IL-6 and stimulate T cells to produce IL-17a upon exposure to MIA. Overall, our data suggest that defined gut commensal bacteria with a propensity to induce TH17 cells may increase the risk of neurodevelopmental disorders in the offspring of pregnant mothers undergoing immune system activation owing to infections or autoinflammatory syndromes.

426 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A better understanding of how the Bcl2 family controls caspase activation should result in new, more effective therapeutic approaches in tissue homeostasis and cancer.
Abstract: Tissue homeostasis is regulated by apoptosis, the cell-suicide programme that is executed by proteases called caspases. The Bcl2 family of intracellular proteins is the central regulator of caspase activation, and its opposing factions of anti- and pro-apoptotic members arbitrate the life-or-death decision. Apoptosis is often impaired in cancer and can limit conventional therapy. A better understanding of how the Bcl2 family controls caspase activation should result in new, more effective therapeutic approaches.

3,768 citations

Journal ArticleDOI
TL;DR: It is shown that Parkin is selectively recruited to dysfunctional mitochondria with low membrane potential in mammalian cells and this recruitment promotes autophagy of damaged mitochondria and implicate a failure to eliminate dysfunctional mitochondira in the pathogenesis of Parkinson's disease.
Abstract: Loss-of-function mutations in Park2, the gene coding for the ubiquitin ligase Parkin, are a significant cause of early onset Parkinson's disease. Although the role of Parkin in neuron maintenance is unknown, recent work has linked Parkin to the regulation of mitochondria. Its loss is associated with swollen mitochondria and muscle degeneration in Drosophila melanogaster, as well as mitochondrial dysfunction and increased susceptibility to mitochondrial toxins in other species. Here, we show that Parkin is selectively recruited to dysfunctional mitochondria with low membrane potential in mammalian cells. After recruitment, Parkin mediates the engulfment of mitochondria by autophagosomes and the selective elimination of impaired mitochondria. These results show that Parkin promotes autophagy of damaged mitochondria and implicate a failure to eliminate dysfunctional mitochondria in the pathogenesis of Parkinson's disease.

3,413 citations

Journal ArticleDOI
Lorenzo Galluzzi1, Lorenzo Galluzzi2, Ilio Vitale3, Stuart A. Aaronson4  +183 moreInstitutions (111)
TL;DR: The Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives.
Abstract: Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.

3,301 citations

01 Jan 1999
TL;DR: Caspases, a family of cysteine-dependent aspartate-directed proteases, are prominent among the death proteases as discussed by the authors, and they play critical roles in initiation and execution of this process.
Abstract: ■ Abstract Apoptosis is a genetically programmed, morphologically distinct form of cell death that can be triggered by a variety of physiological and pathological stimuli. Studies performed over the past 10 years have demonstrated that proteases play critical roles in initiation and execution of this process. The caspases, a family of cysteine-dependent aspartate-directed proteases, are prominent among the death proteases. Caspases are synthesized as relatively inactive zymogens that become activated by scaffold-mediated transactivation or by cleavage via upstream proteases in an intracellular cascade. Regulation of caspase activation and activity occurs at several different levels: ( a) Zymogen gene transcription is regulated; ( b) antiapoptotic members of the Bcl-2 family and other cellular polypeptides block proximity-induced activation of certain procaspases; and ( c) certain cellular inhibitor of apoptosis proteins (cIAPs) can bind to and inhibit active caspases. Once activated, caspases cleave a variety of intracellular polypeptides, including major structural elements of the cytoplasm and nucleus, components of the DNA repair machinery, and a number of protein kinases. Collectively, these scissions disrupt survival pathways and disassemble important architectural components of the cell, contributing to the stereotypic morphological and biochemical changes that characterize apoptotic cell death.

2,685 citations