scispace - formally typeset
Search or ask a question
Author

Jun Sakakibara

Bio: Jun Sakakibara is an academic researcher from Meiji University. The author has contributed to research in topics: Particle image velocimetry & Vortex. The author has an hindex of 20, co-authored 63 publications receiving 2026 citations. Previous affiliations of Jun Sakakibara include University of Tsukuba & Keio University.


Papers
More filters
01 Nov 1997
TL;DR: In this paper, a technique is described that measures the instantaneous three-dimensional temperature distribution in water using two-color laser-induced fluorescence (LIF) and two fluorescent dyes, Rhodamine B and Rhodamine 110, are used as temperature indicators.
Abstract: A technique is described that measures the instantaneous three-dimensional temperature distribution in water using two-color laser-induced fluorescence (LIF). Two fluorescent dyes, Rhodamine B and Rhodamine 110, are used as temperature indicators. A laser light sheet scanned across the entire measurement volume excites the fluorescent dye, and an optical system involving a color beam splitter gives the intensity distribution of the individual fluorescent dyes on two separate monochrome CCD cameras. The ratio of these fluorescence intensities at each point of the image is calibrated against the temperature to eliminate the effect of the fluctuation of illuminating light intensity. A stable thermally stratified layer was measured by this system to evaluate the total accuracy of the measurement system. The random error of the measurement was ±1.4 K with 95% confidence. Measurements of thermal convection over a heated horizontal surface show temperature iso-surfaces having typical structures such as plumes, ridges and thermals.

300 citations

Journal ArticleDOI
TL;DR: In this paper, a technique is described that measures the instantaneous three-dimensional temperature distribution in water using two-color laser-induced fluorescence (LIF) and two fluorescent dyes, Rhodamine B and Rhodamine 110, are used as temperature indicators.
Abstract: A technique is described that measures the instantaneous three-dimensional temperature distribution in water using two-color laser-induced fluorescence (LIF). Two fluorescent dyes, Rhodamine B and Rhodamine 110, are used as temperature indicators. A laser light sheet scanned across the entire measurement volume excites the fluorescent dye, and an optical system involving a color beam splitter gives the intensity distribution of the individual fluorescent dyes on two separate monochrome CCD cameras. The ratio of these fluorescence intensities at each point of the image is calibrated against the temperature to eliminate the effect of the fluctuation of illuminating light intensity. A stable thermally stratified layer was measured by this system to evaluate the total accuracy of the measurement system. The random error of the measurement was ±1.4 K with 95% confidence. Measurements of thermal convection over a heated horizontal surface show temperature iso-surfaces having typical structures such as plumes, ridges and thermals.

283 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied the evolution of the fingering pattern at the edge of a water drop on a glass plate, and found that the initial fingers widen and split in two.
Abstract: The impact of a drop on a solid surface generates a rapidly expanding thin jet traveling along the surface. We study the evolution of the fingering pattern at the edge of this jet during the impact of a water drop on a glass plate. Multiple-flash photography shows that systematic changes in frontal shapes take place during the expansion. The initial fingers widen and split in two. This splitting is in many cases limited to the development of a double peak on each finger. The subsequent interaction of two such adjacent undulations often results in merging which produces three pronounced fingers. Despite the significant changes in the frontal shapes, the number of fundamental undulations remains approximately constant during the expansion. The progenitors of these azimuthal disturbances are observed right at first contact. Some heuristic arguments based on capillary waves are put forth to explain the splitting and merging. The main focus of this study is on impacts having Reynolds numbers of about 15 000, b...

192 citations

Journal ArticleDOI
TL;DR: In this paper, a stereo particle image velocimetry (SSPIV) system was developed to measure the 3D distribution of three-component (3C) velocity in a turbulent round jet.
Abstract: A scanning stereo particle image velocimetry (SSPIV) system was developed to measure the three-dimensional (3D) distribution of three-component (3C) velocity in a turbulent round jet. A laser light sheet produced with a high-repetition-rate pulsed Nd:YLF laser was scanned by an optical scanner in a direction normal to the sheet. Two high-speed mega-pixel resolution C-MOS cameras captured the particle images illuminated by the light sheet, and the stereoscopic PIV method was adopted to acquire the 3D-3C velocity distribution of turbulent water flow. A water jet formed by a round nozzle with an exit diameter of D = 5 mm was diagnosed by the current technique. The jet Reynolds number was set at Re ≈ 1000, and the streamwise location of the measurement was fixed at approximately x = 45D. A measurement volume (~100 × 100 × 100 mm3) containing 50 velocity planes was scanned in 0.22 s, which was sufficiently short to capture the instantaneous vortical structures. The residue of the continuity equation (divergence) was approximately 7% of rms vorticity on the centreline of the jet. The iso-vorticity surfaces clearly depict vortical structures in the jet shear layer.

148 citations

Journal ArticleDOI
TL;DR: The cases and specific algorithms and evaluation parameters applied by the participants are described and the main results are reviewed.
Abstract: In the last decade, worldwide PIV development efforts have resulted in significant improvements in terms of accuracy, resolution, dynamic range and extension to higher dimensions. To assess the achievements and to guide future development efforts, an International PIV Challenge was performed in Lisbon (Portugal) on July 5, 2014. Twenty leading participants, including the major system providers, i.e., Dantec (Denmark), LaVision (Germany), MicroVec (China), PIVTEC (Germany), TSI (USA), have analyzed 5 cases. The cases and analysis explore challenges specific to 2D microscopic PIV (case A), 2D time-resolved PIV (case B), 3D tomographic PIV (cases C and D) and stereoscopic PIV (case E). During the event, 2D macroscopic PIV images (case F) were provided to all 80 attendees of the workshop in Lisbon, with the aim to assess the impact of the user’s experience on the evaluation result. This paper describes the cases and specific algorithms and evaluation parameters applied by the participants and reviews the main results. For future analysis and comparison, the full image database will be accessible at http://www.pivChallenge.org .

148 citations


Cited by
More filters
Book ChapterDOI
01 Jan 1997
TL;DR: The boundary layer equations for plane, incompressible, and steady flow are described in this paper, where the boundary layer equation for plane incompressibility is defined in terms of boundary layers.
Abstract: The boundary layer equations for plane, incompressible, and steady flow are $$\matrix{ {u{{\partial u} \over {\partial x}} + v{{\partial u} \over {\partial y}} = - {1 \over \varrho }{{\partial p} \over {\partial x}} + v{{{\partial ^2}u} \over {\partial {y^2}}},} \cr {0 = {{\partial p} \over {\partial y}},} \cr {{{\partial u} \over {\partial x}} + {{\partial v} \over {\partial y}} = 0.} \cr }$$

2,598 citations

Journal ArticleDOI
TL;DR: In this article, a review deals with drop impacts on thin liquid layers and dry surfaces, referred to as splashing, and their propagation is discussed in detail, as well as some additional kindred, albeit nonsplashing, phenomena like drop spreading and deposition, receding (recoil), jetting, fingering, and rebound.
Abstract: The review deals with drop impacts on thin liquid layers and dry surfaces. The impacts resulting in crown formation are referred to as splashing. Crowns and their propagation are discussed in detail, as well as some additional kindred, albeit nonsplashing, phenomena like drop spreading and deposition, receding (recoil), jetting, fingering, and rebound. The review begins with an explanation of various practical motivations feeding the interest in the fascinating phenomena of drop impact, and the above-mentioned topics are then considered in their experimental, theoretical, and computational aspects.

2,077 citations

Journal ArticleDOI
TL;DR: A review of the current state-of-the-art experimental and computational techniques for turbulent dispersed multiphase flows, their strengths and limitations, and opportunities for the future can be found in this paper.
Abstract: Turbulent dispersed multiphase flows are common in many engineering and environmental applications. The stochastic nature of both the carrier-phase turbulence and the dispersed-phase distribution makes the problem of turbulent dispersed multiphase flow far more complex than its single-phase counterpart. In this article we first review the current state-of-the-art experimental and computational techniques for turbulent dispersed multiphase flows, their strengths and limitations, and opportunities for the future. The review then focuses on three important aspects of turbulent dispersed multiphase flows: the preferential concentration of particles, droplets, and bubbles; the effect of turbulence on the coupling between the dispersed and carrier phases; and modulation of carrier-phase turbulence due to the presence of particles and bubbles.

1,401 citations

Journal ArticleDOI
TL;DR: In this paper, a tomographic particle image velocimetry (tomographic-PIV) system based on the illumination, recording and reconstruction of tracer particles within a 3D measurement volume is described.
Abstract: This paper describes the principles of a novel 3D PIV system based on the illumination, recording and reconstruction of tracer particles within a 3D measurement volume The technique makes use of several simultaneous views of the illuminated particles and their 3D reconstruction as a light intensity distribution by means of optical tomography The technique is therefore referred to as tomographic particle image velocimetry (tomographic-PIV) The reconstruction is performed with the MART algorithm, yielding a 3D array of light intensity discretized over voxels The reconstructed tomogram pair is then analyzed by means of 3D cross-correlation with an iterative multigrid volume deformation technique, returning the three-component velocity vector distribution over the measurement volume The principles and details of the tomographic algorithm are discussed and a parametric study is carried out by means of a computer-simulated tomographic-PIV procedure The study focuses on the accuracy of the light intensity field reconstruction process The simulation also identifies the most important parameters governing the experimental method and the tomographic algorithm parameters, showing their effect on the reconstruction accuracy A computer simulated experiment of a 3D particle motion field describing a vortex ring demonstrates the capability and potential of the proposed system with four cameras The capability of the technique in real experimental conditions is assessed with the measurement of the turbulent flow in the near wake of a circular cylinder at Reynolds 2,700

1,159 citations

Journal ArticleDOI
TL;DR: In the case of aircraft components, AM technology enables low-volume manufacturing, easy integration of design changes and, at least as importantly, piece part reductions to greatly simplify product assembly.
Abstract: The past few decades have seen substantial growth in Additive Manufacturing (AM) technologies. However, this growth has mainly been process-driven. The evolution of engineering design to take advantage of the possibilities afforded by AM and to manage the constraints associated with the technology has lagged behind. This paper presents the major opportunities, constraints, and economic considerations for Design for Additive Manufacturing. It explores issues related to design and redesign for direct and indirect AM production. It also highlights key industrial applications, outlines future challenges, and identifies promising directions for research and the exploitation of AM's full potential in industry.

1,132 citations