scispace - formally typeset
Search or ask a question
Author

Jun Yu

Bio: Jun Yu is an academic researcher from Hangzhou Dianzi University. The author has contributed to research in topics: Deep learning & Feature extraction. The author has an hindex of 38, co-authored 179 publications receiving 7667 citations. Previous affiliations of Jun Yu include Xiamen University & Jiangnan University.


Papers
More filters
Proceedings ArticleDOI
04 Aug 2017
TL;DR: A Multi-modal Factorized Bilinear (MFB) pooling approach to efficiently and effectively combine multi- modal features, which results in superior performance for VQA compared with other bilinear pooling approaches.
Abstract: Visual question answering (VQA) is challenging because it requires a simultaneous understanding of both the visual content of images and the textual content of questions. The approaches used to represent the images and questions in a fine-grained manner and questions and to fuse these multimodal features play key roles in performance. Bilinear pooling based models have been shown to outperform traditional linear models for VQA, but their high-dimensional representations and high computational complexity may seriously limit their applicability in practice. For multimodal feature fusion, here we develop a Multi-modal Factorized Bilinear (MFB) pooling approach to efficiently and effectively combine multi-modal features, which results in superior performance for VQA compared with other bilinear pooling approaches. For fine-grained image and question representation, we develop a ‘co-attention’ mechanism using an end-to-end deep network architecture to jointly learn both the image and question attentions. Combining the proposed MFB approach with co-attention learning in a new network architecture provides a unified model for VQA. Our experimental results demonstrate that the single MFB with co-attention model achieves new state-of-theart performance on the real-world VQA dataset. Code available at https://github.com/yuzcccc/mfb.

581 citations

Journal ArticleDOI
TL;DR: A novel pose recovery method using non-linear mapping with multi-layered deep neural network and back-propagation deep learning to obtain a unified feature description by standard eigen-decomposition of the hypergraph Laplacian matrix.
Abstract: Video-based human pose recovery is usually conducted by retrieving relevant poses using image features. In the retrieving process, the mapping between 2D images and 3D poses is assumed to be linear in most of the traditional methods. However, their relationships are inherently non-linear, which limits recovery performance of these methods. In this paper, we propose a novel pose recovery method using non-linear mapping with multi-layered deep neural network. It is based on feature extraction with multimodal fusion and back-propagation deep learning. In multimodal fusion, we construct hypergraph Laplacian with low-rank representation. In this way, we obtain a unified feature description by standard eigen-decomposition of the hypergraph Laplacian matrix. In back-propagation deep learning, we learn a non-linear mapping from 2D images to 3D poses with parameter fine-tuning. The experimental results on three data sets show that the recovery error has been reduced by 20%–25%, which demonstrates the effectiveness of the proposed method.

515 citations

Journal ArticleDOI
TL;DR: A multimodal hypergraph learning-based sparse coding method is proposed for image click prediction, and the obtained click data is applied to the reranking of images, which shows the use of click prediction is beneficial to improving the performance of prominent graph-based image reranking algorithms.
Abstract: Image reranking is effective for improving the performance of a text-based image search. However, existing reranking algorithms are limited for two main reasons: 1) the textual meta-data associated with images is often mismatched with their actual visual content and 2) the extracted visual features do not accurately describe the semantic similarities between images. Recently, user click information has been used in image reranking, because clicks have been shown to more accurately describe the relevance of retrieved images to search queries. However, a critical problem for click-based methods is the lack of click data, since only a small number of web images have actually been clicked on by users. Therefore, we aim to solve this problem by predicting image clicks. We propose a multimodal hypergraph learning-based sparse coding method for image click prediction, and apply the obtained click data to the reranking of images. We adopt a hypergraph to build a group of manifolds, which explore the complementarity of different features through a group of weights. Unlike a graph that has an edge between two vertices, a hyperedge in a hypergraph connects a set of vertices, and helps preserve the local smoothness of the constructed sparse codes. An alternating optimization procedure is then performed, and the weights of different modalities and the sparse codes are simultaneously obtained. Finally, a voting strategy is used to describe the predicted click as a binary event (click or no click), from the images' corresponding sparse codes. Thorough empirical studies on a large-scale database including nearly 330 K images demonstrate the effectiveness of our approach for click prediction when compared with several other methods. Additional image reranking experiments on real-world data show the use of click prediction is beneficial to improving the performance of prominent graph-based image reranking algorithms.

502 citations

Journal ArticleDOI
TL;DR: Zhang et al. as mentioned in this paper proposed a coattention mechanism using a deep neural network (DNN) architecture to jointly learn the attentions for both the image and the question, which can reduce the irrelevant features effectively and obtain more discriminative features for image and question representations.
Abstract: Visual question answering (VQA) is challenging, because it requires a simultaneous understanding of both visual content of images and textual content of questions. To support the VQA task, we need to find good solutions for the following three issues: 1) fine-grained feature representations for both the image and the question; 2) multimodal feature fusion that is able to capture the complex interactions between multimodal features; and 3) automatic answer prediction that is able to consider the complex correlations between multiple diverse answers for the same question. For fine-grained image and question representations, a “coattention” mechanism is developed using a deep neural network (DNN) architecture to jointly learn the attentions for both the image and the question, which can allow us to reduce the irrelevant features effectively and obtain more discriminative features for image and question representations. For multimodal feature fusion, a generalized multimodal factorized high-order pooling approach (MFH) is developed to achieve more effective fusion of multimodal features by exploiting their correlations sufficiently, which can further result in superior VQA performance as compared with the state-of-the-art approaches. For answer prediction, the Kullback–Leibler divergence is used as the loss function to achieve precise characterization of the complex correlations between multiple diverse answers with the same or similar meaning, which can allow us to achieve faster convergence rate and obtain slightly better accuracy on answer prediction. A DNN architecture is designed to integrate all these aforementioned modules into a unified model for achieving superior VQA performance. With an ensemble of our MFH models, we achieve the state-of-the-art performance on the large-scale VQA data sets and win the runner-up in VQA Challenge 2017.

437 citations

Proceedings ArticleDOI
15 Jun 2019
TL;DR: In this article, a modular co-attention network (MCAN) is proposed, which consists of Modular Co-Attention (MCA) layers cascaded in depth.
Abstract: Visual Question Answering (VQA) requires a fine-grained and simultaneous understanding of both the visual content of images and the textual content of questions. Therefore, designing an effective `co-attention' model to associate key words in questions with key objects in images is central to VQA performance. So far, most successful attempts at co-attention learning have been achieved by using shallow models, and deep co-attention models show little improvement over their shallow counterparts. In this paper, we propose a deep Modular Co-Attention Network (MCAN) that consists of Modular Co-Attention (MCA) layers cascaded in depth. Each MCA layer models the self-attention of questions and images, as well as the question-guided-attention of images jointly using a modular composition of two basic attention units. We quantitatively and qualitatively evaluate MCAN on the benchmark VQA-v2 dataset and conduct extensive ablation studies to explore the reasons behind MCAN's effectiveness. Experimental results demonstrate that MCAN significantly outperforms the previous state-of-the-art. Our best single model delivers 70.63% overall accuracy on the test-dev set.

403 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Posted Content
TL;DR: A new dataset of human perceptual similarity judgments is introduced and it is found that deep features outperform all previous metrics by large margins on this dataset, and suggests that perceptual similarity is an emergent property shared across deep visual representations.
Abstract: While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on ImageNet classification has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new dataset of human perceptual similarity judgments. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by large margins on our dataset. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.

3,838 citations

01 Jan 2004
TL;DR: Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance and describes numerous important application areas such as image based rendering and digital libraries.
Abstract: From the Publisher: The accessible presentation of this book gives both a general view of the entire computer vision enterprise and also offers sufficient detail to be able to build useful applications. Users learn techniques that have proven to be useful by first-hand experience and a wide range of mathematical methods. A CD-ROM with every copy of the text contains source code for programming practice, color images, and illustrative movies. Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance. Topics are discussed in substantial and increasing depth. Application surveys describe numerous important application areas such as image based rendering and digital libraries. Many important algorithms broken down and illustrated in pseudo code. Appropriate for use by engineers as a comprehensive reference to the computer vision enterprise.

3,627 citations