scispace - formally typeset
Search or ask a question
Author

Jun Zhang

Bio: Jun Zhang is an academic researcher from Hong Kong Polytechnic University. The author has contributed to research in topics: Wireless network & MIMO. The author has an hindex of 59, co-authored 294 publications receiving 17642 citations. Previous affiliations of Jun Zhang include University of Texas at Austin & The Chinese University of Hong Kong.


Papers
More filters
Journal ArticleDOI
TL;DR: A comprehensive survey of the state-of-the-art MEC research with a focus on joint radio-and-computational resource management is provided in this paper, where a set of issues, challenges, and future research directions for MEC are discussed.
Abstract: Driven by the visions of Internet of Things and 5G communications, recent years have seen a paradigm shift in mobile computing, from the centralized mobile cloud computing toward mobile edge computing (MEC). The main feature of MEC is to push mobile computing, network control and storage to the network edges (e.g., base stations and access points) so as to enable computation-intensive and latency-critical applications at the resource-limited mobile devices. MEC promises dramatic reduction in latency and mobile energy consumption, tackling the key challenges for materializing 5G vision. The promised gains of MEC have motivated extensive efforts in both academia and industry on developing the technology. A main thrust of MEC research is to seamlessly merge the two disciplines of wireless communications and mobile computing, resulting in a wide-range of new designs ranging from techniques for computation offloading to network architectures. This paper provides a comprehensive survey of the state-of-the-art MEC research with a focus on joint radio-and-computational resource management. We also discuss a set of issues, challenges, and future research directions for MEC research, including MEC system deployment, cache-enabled MEC, mobility management for MEC, green MEC, as well as privacy-aware MEC. Advancements in these directions will facilitate the transformation of MEC from theory to practice. Finally, we introduce recent standardization efforts on MEC as well as some typical MEC application scenarios.

2,992 citations

Posted Content
TL;DR: A comprehensive survey of the state-of-the-art MEC research with a focus on joint radio-and-computational resource management and recent standardization efforts on MEC are introduced.
Abstract: Driven by the visions of Internet of Things and 5G communications, recent years have seen a paradigm shift in mobile computing, from the centralized Mobile Cloud Computing towards Mobile Edge Computing (MEC). The main feature of MEC is to push mobile computing, network control and storage to the network edges (e.g., base stations and access points) so as to enable computation-intensive and latency-critical applications at the resource-limited mobile devices. MEC promises dramatic reduction in latency and mobile energy consumption, tackling the key challenges for materializing 5G vision. The promised gains of MEC have motivated extensive efforts in both academia and industry on developing the technology. A main thrust of MEC research is to seamlessly merge the two disciplines of wireless communications and mobile computing, resulting in a wide-range of new designs ranging from techniques for computation offloading to network architectures. This paper provides a comprehensive survey of the state-of-the-art MEC research with a focus on joint radio-and-computational resource management. We also present a research outlook consisting of a set of promising directions for MEC research, including MEC system deployment, cache-enabled MEC, mobility management for MEC, green MEC, as well as privacy-aware MEC. Advancements in these directions will facilitate the transformation of MEC from theory to practice. Finally, we introduce recent standardization efforts on MEC as well as some typical MEC application scenarios.

2,289 citations

Journal ArticleDOI
TL;DR: In this paper, a low-complexity online algorithm is proposed, namely, the Lyapunov optimization-based dynamic computation offloading algorithm, which jointly decides the offloading decision, the CPU-cycle frequencies for mobile execution, and the transmit power for computing offloading.
Abstract: Mobile-edge computing (MEC) is an emerging paradigm to meet the ever-increasing computation demands from mobile applications. By offloading the computationally intensive workloads to the MEC server, the quality of computation experience, e.g., the execution latency, could be greatly improved. Nevertheless, as the on-device battery capacities are limited, computation would be interrupted when the battery energy runs out. To provide satisfactory computation performance as well as achieving green computing, it is of significant importance to seek renewable energy sources to power mobile devices via energy harvesting (EH) technologies. In this paper, we will investigate a green MEC system with EH devices and develop an effective computation offloading strategy. The execution cost , which addresses both the execution latency and task failure, is adopted as the performance metric. A low-complexity online algorithm is proposed, namely, the Lyapunov optimization-based dynamic computation offloading algorithm, which jointly decides the offloading decision, the CPU-cycle frequencies for mobile execution, and the transmit power for computation offloading. A unique advantage of this algorithm is that the decisions depend only on the current system state without requiring distribution information of the computation task request, wireless channel, and EH processes. The implementation of the algorithm only requires to solve a deterministic problem in each time slot, for which the optimal solution can be obtained either in closed form or by bisection search. Moreover, the proposed algorithm is shown to be asymptotically optimal via rigorous analysis. Sample simulation results shall be presented to corroborate the theoretical analysis as well as validate the effectiveness of the proposed algorithm.

1,385 citations

Journal ArticleDOI
TL;DR: Potential technologies for 6G to enable mobile AI applications, as well as AI-enabled methodologies for6G network design and optimization are discussed.
Abstract: The recent upsurge of diversified mobile applications, especially those supported by AI, is spurring heated discussions on the future evolution of wireless communications. While 5G is being deployed around the world, efforts from industry and academia have started to look beyond 5G and conceptualize 6G. We envision 6G to undergo an unprecedented transformation that will make it substantially different from the previous generations of wireless cellular systems. In particular, 6G will go beyond mobile Internet and will be required to support ubiquitous AI services from the core to the end devices of the network. Meanwhile, AI will play a critical role in designing and optimizing 6G architectures, protocols, and operations. In this article, we discuss potential technologies for 6G to enable mobile AI applications, as well as AI-enabled methodologies for 6G network design and optimization. Key trends in the evolution to 6G will also be discussed.

1,245 citations

Journal ArticleDOI
TL;DR: Treating the hybrid precoder design as a matrix factorization problem, effective alternating minimization (AltMin) algorithms will be proposed for two different hybrid precoding structures, i.e., the fully-connected and partially-connected structures, and simulation comparisons between the two hybrid precode structures will provide valuable design insights.
Abstract: Millimeter wave (mmWave) communications has been regarded as a key enabling technology for 5G networks, as it offers orders of magnitude greater spectrum than current cellular bands. In contrast to conventional multiple-input–multiple-output (MIMO) systems, precoding in mmWave MIMO cannot be performed entirely at baseband using digital precoders, as only a limited number of signal mixers and analog-to-digital converters can be supported considering their cost and power consumption. As a cost-effective alternative, a hybrid precoding transceiver architecture, combining a digital precoder and an analog precoder, has recently received considerable attention. However, the optimal design of such hybrid precoders has not been fully understood. In this paper, treating the hybrid precoder design as a matrix factorization problem, effective alternating minimization (AltMin) algorithms will be proposed for two different hybrid precoding structures, i.e., the fully-connected and partially-connected structures. In particular, for the fully-connected structure, an AltMin algorithm based on manifold optimization is proposed to approach the performance of the fully digital precoder, which, however, has a high complexity. Thus, a low-complexity AltMin algorithm is then proposed, by enforcing an orthogonal constraint on the digital precoder. Furthermore, for the partially-connected structure, an AltMin algorithm is also developed with the help of semidefinite relaxation. For practical implementation, the proposed AltMin algorithms are further extended to the broadband setting with orthogonal frequency division multiplexing modulation. Simulation results will demonstrate significant performance gains of the proposed AltMin algorithms over existing hybrid precoding algorithms. Moreover, based on the proposed algorithms, simulation comparisons between the two hybrid precoding structures will provide valuable design insights.

1,079 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.
Abstract: What will 5G be? What it will not be is an incremental advance on 4G. The previous four generations of cellular technology have each been a major paradigm shift that has broken backward compatibility. Indeed, 5G will need to be a paradigm shift that includes very high carrier frequencies with massive bandwidths, extreme base station and device densities, and unprecedented numbers of antennas. However, unlike the previous four generations, it will also be highly integrative: tying any new 5G air interface and spectrum together with LTE and WiFi to provide universal high-rate coverage and a seamless user experience. To support this, the core network will also have to reach unprecedented levels of flexibility and intelligence, spectrum regulation will need to be rethought and improved, and energy and cost efficiencies will become even more critical considerations. This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.

7,139 citations

01 Jan 2016
TL;DR: The table of integrals series and products is universally compatible with any devices to read and is available in the book collection an online access to it is set as public so you can get it instantly.
Abstract: Thank you very much for downloading table of integrals series and products. Maybe you have knowledge that, people have look hundreds times for their chosen books like this table of integrals series and products, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. table of integrals series and products is available in our book collection an online access to it is set as public so you can get it instantly. Our book servers saves in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the table of integrals series and products is universally compatible with any devices to read.

4,085 citations

Journal ArticleDOI
TL;DR: The proposed model is pessimistic (a lower bound on coverage) whereas the grid model is optimistic, and that both are about equally accurate, and the proposed model may better capture the increasingly opportunistic and dense placement of base stations in future networks.
Abstract: Cellular networks are usually modeled by placing the base stations on a grid, with mobile users either randomly scattered or placed deterministically. These models have been used extensively but suffer from being both highly idealized and not very tractable, so complex system-level simulations are used to evaluate coverage/outage probability and rate. More tractable models have long been desirable. We develop new general models for the multi-cell signal-to-interference-plus-noise ratio (SINR) using stochastic geometry. Under very general assumptions, the resulting expressions for the downlink SINR CCDF (equivalent to the coverage probability) involve quickly computable integrals, and in some practical special cases can be simplified to common integrals (e.g., the Q-function) or even to simple closed-form expressions. We also derive the mean rate, and then the coverage gain (and mean rate loss) from static frequency reuse. We compare our coverage predictions to the grid model and an actual base station deployment, and observe that the proposed model is pessimistic (a lower bound on coverage) whereas the grid model is optimistic, and that both are about equally accurate. In addition to being more tractable, the proposed model may better capture the increasingly opportunistic and dense placement of base stations in future networks.

3,309 citations

Journal ArticleDOI
TL;DR: A comprehensive survey of the state-of-the-art MEC research with a focus on joint radio-and-computational resource management is provided in this paper, where a set of issues, challenges, and future research directions for MEC are discussed.
Abstract: Driven by the visions of Internet of Things and 5G communications, recent years have seen a paradigm shift in mobile computing, from the centralized mobile cloud computing toward mobile edge computing (MEC). The main feature of MEC is to push mobile computing, network control and storage to the network edges (e.g., base stations and access points) so as to enable computation-intensive and latency-critical applications at the resource-limited mobile devices. MEC promises dramatic reduction in latency and mobile energy consumption, tackling the key challenges for materializing 5G vision. The promised gains of MEC have motivated extensive efforts in both academia and industry on developing the technology. A main thrust of MEC research is to seamlessly merge the two disciplines of wireless communications and mobile computing, resulting in a wide-range of new designs ranging from techniques for computation offloading to network architectures. This paper provides a comprehensive survey of the state-of-the-art MEC research with a focus on joint radio-and-computational resource management. We also discuss a set of issues, challenges, and future research directions for MEC research, including MEC system deployment, cache-enabled MEC, mobility management for MEC, green MEC, as well as privacy-aware MEC. Advancements in these directions will facilitate the transformation of MEC from theory to practice. Finally, we introduce recent standardization efforts on MEC as well as some typical MEC application scenarios.

2,992 citations