scispace - formally typeset
Search or ask a question
Author

Jun Zhang

Bio: Jun Zhang is an academic researcher from Swinburne University of Technology. The author has contributed to research in topics: Traffic classification & Image retrieval. The author has an hindex of 31, co-authored 149 publications receiving 4556 citations. Previous affiliations of Jun Zhang include Southwest University & Deakin University.


Papers
More filters
Journal ArticleDOI
TL;DR: A novel hybrid threshold adaptable quantum secret sharing scheme, using an m-bonacci orbital angular momentum pump, Lagrange interpolation polynomials, and reverse Huffman-Fibonacci-tree coding, which can detect eavesdropping without joint quantum operations and permits secret sharing for an arbitrary but no less than threshold-value number of classical participants with much lower bandwidth.
Abstract: With prevalent attacks in communication, sharing a secret between communicating parties is an ongoing challenge. Moreover, it is important to integrate quantum solutions with classical secret sharing schemes with low computational cost for the real world use. This paper proposes a novel hybrid threshold adaptable quantum secret sharing scheme, using an m-bonacci orbital angular momentum (OAM) pump, Lagrange interpolation polynomials, and reverse Huffman-Fibonacci-tree coding. To be exact, we employ entangled states prepared by m-bonacci sequences to detect eavesdropping. Meanwhile, we encode m-bonacci sequences in Lagrange interpolation polynomials to generate the shares of a secret with reverse Huffman-Fibonacci-tree coding. The advantages of the proposed scheme is that it can detect eavesdropping without joint quantum operations, and permits secret sharing for an arbitrary but no less than threshold-value number of classical participants with much lower bandwidth. Also, in comparison with existing quantum secret sharing schemes, it still works when there are dynamic changes, such as the unavailability of some quantum channel, the arrival of new participants and the departure of participants. Finally, we provide security analysis of the new hybrid quantum secret sharing scheme and discuss its useful features for modern applications.

812 citations

12 Aug 2016
TL;DR: In this article, the authors proposed a hybrid threshold adaptable quantum secret sharing scheme, using an m-bonacci orbital angular momentum (OAM) pump, Lagrange interpolation polynomials, and reverse Huffman-Fibonacci-tree coding.
Abstract: With prevalent attacks in communication, sharing a secret between communicating parties is an ongoing challenge. Moreover, it is important to integrate quantum solutions with classical secret sharing schemes with low computational cost for the real world use. This paper proposes a novel hybrid threshold adaptable quantum secret sharing scheme, using an m-bonacci orbital angular momentum (OAM) pump, Lagrange interpolation polynomials, and reverse Huffman-Fibonacci-tree coding. To be exact, we employ entangled states prepared by m -bonacci sequences to detect eavesdropping. Meanwhile, we encode m -bonacci sequences in Lagrange interpolation polynomials to generate the shares of a secret with reverse Huffman-Fibonacci-tree coding. The advantages of the proposed scheme is that it can detect eavesdropping without joint quantum operations, and permits secret sharing for an arbitrary but no less than threshold-value number of classical participants with much lower bandwidth. Also, in comparison with existing quantum secret sharing schemes, it still works when there are dynamic changes, such as the unavailability of some quantum channel, the arrival of new participants and the departure of participants. Finally, we provide security analysis of the new hybrid quantum secret sharing scheme and discuss its useful features for modern applications.

400 citations

Journal ArticleDOI
Jun Zhang1, Xiao Chen1, Yang Xiang1, Wanlei Zhou1, Jie Wu2 
TL;DR: The proposed RTC scheme has the capability of identifying the traffic of zero-day applications as well as accurately discriminating predefined application classes and is significantly better than four state-of-the-art methods.
Abstract: As a fundamental tool for network management and security, traffic classification has attracted increasing attention in recent years. A significant challenge to the robustness of classification performance comes from zero-day applications previously unknown in traffic classification systems. In this paper, we propose a new scheme of Robust statistical Traffic Classification (RTC) by combining supervised and unsupervised machine learning techniques to meet this challenge. The proposed RTC scheme has the capability of identifying the traffic of zero-day applications as well as accurately discriminating predefined application classes. In addition, we develop a new method for automating the RTC scheme parameters optimization process. The empirical study on real-world traffic data confirms the effectiveness of the proposed scheme. When zero-day applications are present, the classification performance of the new scheme is significantly better than four state-of-the-art methods: random forest, correlation-based classification, semi-supervised clustering, and one-class SVM.

330 citations

Journal ArticleDOI
TL;DR: A novel nonparametric approach for traffic classification is proposed which can improve the classification performance effectively by incorporating correlated information into the classification process and its performance benefit from both theoretical and empirical perspectives.
Abstract: Traffic classification has wide applications in network management, from security monitoring to quality of service measurements. Recent research tends to apply machine learning techniques to flow statistical feature based classification methods. The nearest neighbor (NN)-based method has exhibited superior classification performance. It also has several important advantages, such as no requirements of training procedure, no risk of overfitting of parameters, and naturally being able to handle a huge number of classes. However, the performance of NN classifier can be severely affected if the size of training data is small. In this paper, we propose a novel nonparametric approach for traffic classification, which can improve the classification performance effectively by incorporating correlated information into the classification process. We analyze the new classification approach and its performance benefit from both theoretical and empirical perspectives. A large number of experiments are carried out on two real-world traffic data sets to validate the proposed approach. The results show the traffic classification performance can be improved significantly even under the extreme difficult circumstance of very few training samples.

318 citations

Journal ArticleDOI
TL;DR: This survey takes into account the early stage threats which may lead to a malicious insider rising up and reviews the countermeasures from a data analytics perspective.
Abstract: Information communications technology systems are facing an increasing number of cyber security threats, the majority of which are originated by insiders. As insiders reside behind the enterprise-level security defence mechanisms and often have privileged access to the network, detecting and preventing insider threats is a complex and challenging problem. In fact, many schemes and systems have been proposed to address insider threats from different perspectives, such as intent, type of threat, or available audit data source. This survey attempts to line up these works together with only three most common types of insider namely traitor, masquerader, and unintentional perpetrator, while reviewing the countermeasures from a data analytics perspective. Uniquely, this survey takes into account the early stage threats which may lead to a malicious insider rising up. When direct and indirect threats are put on the same page, all the relevant works can be categorised as host, network, or contextual data-based according to audit data source and each work is reviewed for its capability against insider threats, how the information is extracted from the engaged data sources, and what the decision-making algorithm is. The works are also compared and contrasted. Finally, some issues are raised based on the observations from the reviewed works and new research gaps and challenges identified.

259 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Proceedings Article
01 Jan 1999

2,010 citations

Journal ArticleDOI
TL;DR: In this phase 3 study, the survival benefits indicate that nivolumab might be a new treatment option for heavily pretreated patients with advanced gastric or gastro-oesophageal junction cancer.

1,512 citations

Book ChapterDOI
E.R. Davies1
01 Jan 1990
TL;DR: This chapter introduces the subject of statistical pattern recognition (SPR) by considering how features are defined and emphasizes that the nearest neighbor algorithm achieves error rates comparable with those of an ideal Bayes’ classifier.
Abstract: This chapter introduces the subject of statistical pattern recognition (SPR). It starts by considering how features are defined and emphasizes that the nearest neighbor algorithm achieves error rates comparable with those of an ideal Bayes’ classifier. The concepts of an optimal number of features, representativeness of the training data, and the need to avoid overfitting to the training data are stressed. The chapter shows that methods such as the support vector machine and artificial neural networks are subject to these same training limitations, although each has its advantages. For neural networks, the multilayer perceptron architecture and back-propagation algorithm are described. The chapter distinguishes between supervised and unsupervised learning, demonstrating the advantages of the latter and showing how methods such as clustering and principal components analysis fit into the SPR framework. The chapter also defines the receiver operating characteristic, which allows an optimum balance between false positives and false negatives to be achieved.

1,189 citations

01 Jan 2013

1,098 citations