scispace - formally typeset
Search or ask a question
Author

Junbo Ren

Bio: Junbo Ren is an academic researcher from Jilin University. The author has contributed to research in topics: Monsoon & Holocene. The author has an hindex of 1, co-authored 1 publications receiving 3 citations. Previous affiliations of Junbo Ren include University of Louisiana at Lafayette.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors quantify monsoon strength based on new oxygen isotope measurements on cellulose (δ18Ocell) extracted from modern and fossil wood from southern China.

6 citations


Cited by
More filters
01 Apr 2012
TL;DR: This article used a series of climate model experiments to investigate the South Asian monsoon response to natural and anthropogenic forcings, and found that the observed precipitation decrease can be attributed mainly to human-influenced aerosol emissions.
Abstract: Changes in monsoon rainfall are caused by human-produced aerosols slowing the tropical atmospheric circulation. Observations show that South Asia underwent a widespread summertime drying during the second half of the 20th century, but it is unclear whether this trend was due to natural variations or human activities. We used a series of climate model experiments to investigate the South Asian monsoon response to natural and anthropogenic forcings. We find that the observed precipitation decrease can be attributed mainly to human-influenced aerosol emissions. The drying is a robust outcome of a slowdown of the tropical meridional overturning circulation, which compensates for the aerosol-induced energy imbalance between the Northern and Southern Hemispheres. These results provide compelling evidence of the prominent role of aerosols in shaping regional climate change over South Asia.

752 citations

07 Nov 2018
TL;DR: The discovery of the youngest well-preserved fossil palm leaves from Tibet shows that a high plateau cannot have existed in the core of Tibet in the Paleogene, and challenges prevailing views on tectonic processes, monsoon dynamics, and the evolution of Asian biodiversity.
Abstract: The youngest palm fossil record in Tibet suggests that there was no high Tibetan Plateau until the Neogene. The Late Paleogene surface height and paleoenvironment for the core area of the Qinghai-Tibetan Plateau (QTP) remain critically unresolved. Here, we report the discovery of the youngest well-preserved fossil palm leaves from Tibet. They were recovered from the Late Paleogene (Chattian), ca. 25.5 ± 0.5 million years, paleolake sediments within the Lunpola Basin (32.033°N, 89.767°E), central QTP at a present elevation of 4655 m. The anatomy of palms renders them intrinsically susceptible to freezing, imposing upper bounds on their latitudinal and altitudinal distribution. Combined with model-determined paleoterrestrial lapse rates, this shows that a high plateau cannot have existed in the core of Tibet in the Paleogene. Instead, a deep paleovalley, whose floor was <2.3 km above mean sea level bounded by (>4 km) high mountain systems, formed a topographically highly varied landscape. This finding challenges prevailing views on tectonic processes, monsoon dynamics, and the evolution of Asian biodiversity.

137 citations

Journal Article
TL;DR: In this paper, the authors investigated future changes in tropical cyclone activity and structure using the outputs of a 14-km mesh climate simulation, which was performed under present-day and warmer climate conditions using a nonhydrostatic icosahedral atmospheric model with explicitly calculated convection.
Abstract: AbstractWe investigated future changes in tropical cyclone (TC) activity and structure using the outputs of a 14-km mesh climate simulation. A set of 30-year simulations were performed under present-day and warmer climate conditions using a nonhydrostatic icosahedral atmospheric model with explicitly calculated convection. The model projected that the global frequency of TCs is reduced by 22.7%, the ratio of intense TCs is increased by 6.6%, and the precipitation rate within 100 km of the TC center increased by 11.8% under warmer climate conditions. These tendencies are consistent with previous studies using hydrostatic global model with cumulus parameterization.The responses of vertical and horizontal structures to global warming are investigated for TCs with the same intensity categories. For TCs whose minimum sea-level pressure (SLP) reaches less than 980 hPa, the model predicted that tangential wind increases in the outside region of the eyewall. Increases in the tangential wind are related to the ele...

51 citations

Journal ArticleDOI
TL;DR: This study sequenced mitochondrial genomes and 32 nuclear genes from 27 samples belonging to 14 species to reconstruct the interspecific phylogenetic relationships within Paramesotriton and explore its historical biogeography in southern China.
Abstract: The Paramesotriton Chang, 1935 genus of Asian warty newts is the second most diverse genus in the family Salamandridae, currently containing 14 recognized species from northern Vietnam to southwest-central and southern China. Although species of this genus have been included in previous phylogenetic studies, the origin and interspecific relationships of the genus are still not fully resolved, especially at key nodes in the phylogeny. In this study, we sequenced mitochondrial genomes and 32 nuclear genes from 27 samples belonging to 14 species to reconstruct the interspecific phylogenetic relationships within Paramesotriton and explore its historical biogeography in southern China. Both Bayesian inference and maximum-likelihood analyses highly supported the monophyly of Paramesotriton and its two recognized species groups (P. caudopunctatus and P. chinensis groups) and further identified five hypothetical phylogenetic cryptic species. Biogeographic analyses indicated that Paramesotriton originated in southwestern China (Yunnan-Guizhou Plateau/South China) during the late Oligocene. The time of origin of Paramesotriton corresponded to the second uplift of the Himalayan/Qinghai-Xizang (Tibetan) Plateau (QTP), rapid lateral extrusion of Indochina, and formation of karst landscapes in southwestern China. Principal component analysis (PCA), independent sample t-tests, and niche differentiation using bioclimatic variables based on locations of occurrence suggested that Paramesotriton habitat conditions in the three current regions (West, South, and East) differ significantly, with different levels of climatic niche differentiation. Species distribution model (SDM) predictions indicated that the most suitable distribution areas for the P. caudopunctatus and P. chinensis species groups are western and southern/eastern areas of southern China. This study increases our knowledge of the taxonomy, biodiversity, origin, and suitable distribution areas of the genus Paramesotriton based on phylogenetic, biogeographic, and species distribution models.

1 citations

Journal ArticleDOI
TL;DR: This paper analyzed a set of 20 paleoclimate simulations spanning the late Eocene to latest Miocene (∼ 40-8 Ma) in order to better understand the evolution of the distinct Asian monsoon subsystems.