scispace - formally typeset
Search or ask a question
Author

Junbo Zhao

Other affiliations: Hunan University, Southwest Jiaotong University, Virginia Tech  ...read more
Bio: Junbo Zhao is an academic researcher from Mississippi State University. The author has contributed to research in topics: Electric power system & Computer science. The author has an hindex of 27, co-authored 144 publications receiving 2598 citations. Previous affiliations of Junbo Zhao include Hunan University & Southwest Jiaotong University.


Papers
More filters
Journal ArticleDOI
TL;DR: A unified framework is proposed to clarify the important concepts related to DSE, forecasting-aided state estimation, trackingstate estimation, and static state estimation and provide future research needs and directions for the power engineering community.
Abstract: This paper summarizes the technical activities of the Task Force on Power System Dynamic State and Parameter Estimation. This Task Force was established by the IEEE Working Group on State Estimation Algorithms to investigate the added benefits of dynamic state and parameter estimation for the enhancement of the reliability, security, and resilience of electric power systems. The motivations and engineering values of dynamic state estimation (DSE) are discussed in detail. Then, a set of potential applications that will rely on DSE is presented and discussed. Furthermore, a unified framework is proposed to clarify the important concepts related to DSE, forecasting-aided state estimation, tracking state estimation, and static state estimation. An overview of the current progress in DSE and dynamic parameter estimation is provided. The paper also provides future research needs and directions for the power engineering community.

419 citations

Journal ArticleDOI
TL;DR: In this paper, a robust iterated extended Kalman filter (EKF) based on the generalized maximum likelihood approach (termed GM-IEKF), is proposed for estimating power system state dynamics when subjected to disturbances.
Abstract: This paper develops a robust iterated extended Kalman filter (EKF) based on the generalized maximum likelihood approach (termed GM-IEKF) for estimating power system state dynamics when subjected to disturbances. The proposed GM-IEKF dynamic state estimator is able to track system transients in a faster and more reliable way than the conventional EKF and the unscented Kalman filter (UKF) thanks to its batch-mode regression form and its robustness to innovation and observation outliers, even in position of leverage. Innovation outliers may be caused by impulsive noise in the dynamic state model while observation outliers may be due to large biases, cyber attacks, or temporary loss of communication links of PMUs. Good robustness and high statistical efficiency under Gaussian noise are achieved via the minimization of the Huber convex cost function of the standardized residuals. The latter is weighted via a function of robust distances of the two-time sequence of the predicted state and innovation vectors and calculated by means of the projection statistics. The state estimation error covariance matrix is derived using the total influence function, resulting in a robust state prediction in the next time step. Simulation results carried out on the IEEE 39-bus test system demonstrate the good performance of the GM-IEKF under Gaussian and non-Gaussian process and observation noise.

335 citations

Journal ArticleDOI
TL;DR: The results of case studies show that FDSNP is effective in diagnosing faults in power transmission networks for single and multiple fault situations with/without incomplete and uncertain SCADA data, and is superior to four methods reported in the literature in terms of the correctness of diagnosis results.
Abstract: This paper proposes a graphic modeling approach, fault diagnosis method based on fuzzy reasoning spiking neural P systems (FDSNP), for power transmission networks. In FDSNP, fuzzy reasoning spiking neural P systems (FRSN P systems) with trapezoidal fuzzy numbers are used to model candidate faulty sections and an algebraic fuzzy reasoning algorithm is introduced to obtain confidence levels of candidate faulty sections, so as to identify faulty sections. FDSNP offers an intuitive illustration based on a strictly mathematical expression, a good fault-tolerant capacity due to its handling of incomplete and uncertain messages in a parallel manner, a good description for the relationships between protective devices and faults, and an understandable diagnosis model-building process. To test the validity and feasibility of FDSNP, seven cases of a local subsystem in an electrical power system are used. The results of case studies show that FDSNP is effective in diagnosing faults in power transmission networks for single and multiple fault situations with/without incomplete and uncertain SCADA data, and is superior to four methods, reported in the literature, in terms of the correctness of diagnosis results.

204 citations

Journal ArticleDOI
TL;DR: The approximate dc model is extended to a more general linear model that can handle both supervisory control and data acquisition and phasor measurement unit measurements and a general FDIA based on this model is derived and the error tolerance of such attacks is discussed.
Abstract: Successful detection of false data injection attacks (FDIAs) is essential for ensuring secure power grids operation and control. First, this paper extends the approximate dc model to a more general linear model that can handle both supervisory control and data acquisition and phasor measurement unit measurements. Then, a general FDIA based on this model is derived and the error tolerance of such attacks is discussed. To detect such attacks, a method based on short-term state forecasting considering temporal correlation is proposed. Furthermore, a statistics-based measurement consistency test method is presented to check the consistency between the forecasted measurements and the received measurements. This measurement consistency test is further integrated with ${\infty }$ -norm and ${L}_{{2}}$ -norm-based measurement residual analysis to construct the proposed detection metric. The proposed detector addresses the shortcoming of previous detectors in terms of handling critical measurements. Besides, the removal problem of attacked measurements, which may cause the system to become unobservable, is addressed effectively by the proposed method through forecasted measurements. Numerical tests on IEEE 14-bus and 118-bus test systems verify the effectiveness and performance of the proposed method.

172 citations

Journal ArticleDOI
TL;DR: An adaptive weight assignment function to dynamically adjust the measurement weight based on the distance of big unwanted disturbances from the PMU measurements is proposed to increase algorithm robustness and a statistical test-based interpolation matrix H updating judgment strategy is proposed.
Abstract: Accurate real-time states provided by the state estimator are critical for power system reliable operation and control. This paper proposes a novel phasor measurement unit (PMU)-based robust state estimation method (PRSEM) to real-time monitor a power system under different operation conditions. To be specific, an adaptive weight assignment function to dynamically adjust the measurement weight based on the distance of big unwanted disturbances from the PMU measurements is proposed to increase algorithm robustness. Furthermore, a statistical test-based interpolation matrix ${H}$ updating judgment strategy is proposed. The processed and resynced PMU information are used as priori information and incorporated to the modified weighted least square estimation to address the measurements imperfect synchronization between supervisory control and data acquisition and PMU measurements. Finally, the innovation analysis-based bad data (BD) detection method, which can handle the smearing effect and critical measurement errors, is presented. We evaluate PRSEM by using IEEE benchmark test systems and a realistic utility system. The numerical results indicate that, in short computation time, PRSEM can effectively track the system real-time states with good robustness and can address several kinds of BD.

169 citations


Cited by
More filters
Proceedings Article
14 Jul 1996
TL;DR: The striking signature of Bose condensation was the sudden appearance of a bimodal velocity distribution below the critical temperature of ~2µK.
Abstract: Bose-Einstein condensation (BEC) has been observed in a dilute gas of sodium atoms. A Bose-Einstein condensate consists of a macroscopic population of the ground state of the system, and is a coherent state of matter. In an ideal gas, this phase transition is purely quantum-statistical. The study of BEC in weakly interacting systems which can be controlled and observed with precision holds the promise of revealing new macroscopic quantum phenomena that can be understood from first principles.

3,530 citations

01 Jun 2005

3,154 citations

01 Apr 2003
TL;DR: The EnKF has a large user group, and numerous publications have discussed applications and theoretical aspects of it as mentioned in this paper, and also presents new ideas and alternative interpretations which further explain the success of the EnkF.
Abstract: The purpose of this paper is to provide a comprehensive presentation and interpretation of the Ensemble Kalman Filter (EnKF) and its numerical implementation. The EnKF has a large user group, and numerous publications have discussed applications and theoretical aspects of it. This paper reviews the important results from these studies and also presents new ideas and alternative interpretations which further explain the success of the EnKF. In addition to providing the theoretical framework needed for using the EnKF, there is also a focus on the algorithmic formulation and optimal numerical implementation. A program listing is given for some of the key subroutines. The paper also touches upon specific issues such as the use of nonlinear measurements, in situ profiles of temperature and salinity, and data which are available with high frequency in time. An ensemble based optimal interpolation (EnOI) scheme is presented as a cost-effective approach which may serve as an alternative to the EnKF in some applications. A fairly extensive discussion is devoted to the use of time correlated model errors and the estimation of model bias.

2,975 citations

01 Nov 1981
TL;DR: In this paper, the authors studied the effect of local derivatives on the detection of intensity edges in images, where the local difference of intensities is computed for each pixel in the image.
Abstract: Most of the signal processing that we will study in this course involves local operations on a signal, namely transforming the signal by applying linear combinations of values in the neighborhood of each sample point. You are familiar with such operations from Calculus, namely, taking derivatives and you are also familiar with this from optics namely blurring a signal. We will be looking at sampled signals only. Let's start with a few basic examples. Local difference Suppose we have a 1D image and we take the local difference of intensities, DI(x) = 1 2 (I(x + 1) − I(x − 1)) which give a discrete approximation to a partial derivative. (We compute this for each x in the image.) What is the effect of such a transformation? One key idea is that such a derivative would be useful for marking positions where the intensity changes. Such a change is called an edge. It is important to detect edges in images because they often mark locations at which object properties change. These can include changes in illumination along a surface due to a shadow boundary, or a material (pigment) change, or a change in depth as when one object ends and another begins. The computational problem of finding intensity edges in images is called edge detection. We could look for positions at which DI(x) has a large negative or positive value. Large positive values indicate an edge that goes from low to high intensity, and large negative values indicate an edge that goes from high to low intensity. Example Suppose the image consists of a single (slightly sloped) edge:

1,829 citations