scispace - formally typeset
Search or ask a question
Author

Juncheng Hu

Bio: Juncheng Hu is an academic researcher from South Central University for Nationalities. The author has contributed to research in topics: Photocatalysis & Catalysis. The author has an hindex of 39, co-authored 121 publications receiving 4390 citations. Previous affiliations of Juncheng Hu include Fudan University & International University, Cambodia.


Papers
More filters
Journal ArticleDOI
TL;DR: The unique hollow spheres structure may favor the harvesting of exciting light due to multiple scattering within the interior space, and the doping of Ni(2+) may facilitate the generation of electrons and holes pairs and inhibit their recombination rate by act as a temporary trapping sites of photoinduced electrons.
Abstract: CdS and Ni-doped CdS hollow spheres were synthesized via a simple template-free one-pot method. The products were characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, energy-dispersive spectroscopy analysis, X-ray photoelectron spectroscopy, and UV-vis absorption spectroscopy. The formation mechanism for the Ni-doped CdS hollow spheres was discussed. The prepared CdS and Ni-doped CdS hollow spheres showed the superior photocatalytic activity for the degradation of RhB under visible light (λ > 420 nm) irradiation, and 1.2 mol % Ni-doped CdS hollow spheres were found to be highly efficient for organic pollutants RhB and phenol removal. Moreover, this catalyst showed improved stability, and the activity did not decrease significantly after four recycles. The unique hollow spheres structure may favor the harvesting of exciting light due to multiple scattering within the interior space, and the doping of Ni(2+) may facilitate the generation of electrons and holes pairs and inhibit their recombination rate by act as a temporary trapping sites of photoinduced electrons.

251 citations

Journal ArticleDOI
TL;DR: In this article, the catalytic activity for the production of biodiesel with three morphologically different nanocrystalline MgO materials prepared using simple, green and reproducible methods was investigated.

236 citations

Journal ArticleDOI
TL;DR: In this paper, a uniform porous hierarchical plate-like BiOCl/2D networks Bi2S3 heterostructures realized by a facile two-step hydrothermal technique was demonstrated.
Abstract: We herein demonstrate the uniform porous hierarchical plate-like BiOCl/2D networks Bi2S3 heterostructures realized by a facile two-step hydrothermal technique. The synthesis involved an anion exchange process by reacting pre-synthesized BiOCl irregular octagonal nanoplates with Na2S2O3·5H2O in an aqueous solution. The experiment results revealed that the 3D plate-like heterostructures were composed of internal BiOCl and outside networks interwoven by 1D Bi2S3 nanorods. Interestingly, the heterostructures had almost the same thickness and the bigger length compared to the precursor BiOCl. We proposed the possible formation mechanism of the composites which involved selective ion-exchange reaction, the following Ostwald ripening process and epitaxial growth. And the crystal lattice matching between the a- or b-axis of tetragonal BiOCl (a = b = 3.89 A) and the a-axis of orthorhombic Bi2S3 (a = 3.981 A) could be responsible for the in-situ topotactic transformation. Due to the formation of hetero-nanostructures, the unique spatial architecture features and the existence of oxygen vacancies, the BiOCl/Bi2S3 composites exhibited significantly extended photo-responsive range and improved photocatalytic activity for reduction of CrVI under visible-light irradiation. Moreover, the possible mechanism of photocatalysis process was investigated. Our work is expected to inspire further attempts for hierarchical and unconventional hetero-nanostructures with unique spatial architecture, which is very promising for photocatalysis and other applications.

172 citations

Journal ArticleDOI
TL;DR: In this paper, a series of BiOBr nanosheets with tunable exposing proportion of (0, 1, 0) facets had been synthesized, which showed an efficient photodegradation activity for salicylic acid and Rhodamine B (RhB).
Abstract: A series of BiOBr nanosheets with tunable exposing proportion of (0 1 0) facets had been synthesized. In the synthesis process, different n -alcohols are used, which not only promote the exposure of (0 1 0) facets, but also modulate the size and thickness of these BiOBr nanosheets in a wide range. Furthermore, these nanosheets showed an efficient photodegradation activity for salicylic acid (SA) and Rhodamine B (RhB). By comparison, the sample prepared in n -hexanol possessed the highest photocatalytic activity than those synthesized in n -butanol and methanol, respectively. This excellent photocatalytic activity was attributed to the thin lamellar thickness and the exposure of (0 1 0) facets, which facilitated the separation of photoinduced electrons and holes.

156 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Review presents the recent developments and the use of NP catalysis in organic synthesis, for example, in hydrogenation and C--C coupling reactions, and the heterogeneous oxidation of CO on gold NPs.
Abstract: Interest in catalysis by metal nanoparticles (NPs) is increasing dramatically, as reflected by the large number of publications in the last five years. This field, "semi-heterogeneous catalysis", is at the frontier between homogeneous and heterogeneous catalysis, and progress has been made in the efficiency and selectivity of reactions and recovery and recyclability of the catalytic materials. Usually NP catalysts are prepared from a metal salt, a reducing agent, and a stabilizer and are supported on an oxide, charcoal, or a zeolite. Besides the polymers and oxides that used to be employed as standard, innovative stabilizers, media, and supports have appeared, such as dendrimers, specific ligands, ionic liquids, surfactants, membranes, carbon nanotubes, and a variety of oxides. Ligand-free procedures have provided remarkable results with extremely low metal loading. The Review presents the recent developments and the use of NP catalysis in organic synthesis, for example, in hydrogenation and C--C coupling reactions, and the heterogeneous oxidation of CO on gold NPs.

2,790 citations

Journal ArticleDOI
TL;DR: The development of novel materials is a fundamental focal point of chemical research; and this interest is mandated by advancements in all areas of industry and technology.
Abstract: The development of novel materials is a fundamental focal point of chemical research; and this interest is mandated by advancements in all areas of industry and technology. A good example of the synergism between scientific discovery and technological development is the electronics industry, where discoveries of new semiconducting materials resulted in the evolution from vacuum tubes to diodes and transistors, and eventually to miniature chips. The progression of this technology led to the development * To whom correspondence should be addressed. B.L.C.: (504) 2801385 (phone); (504) 280-3185 (fax); bcushing@uno.edu (e-mail). C.J.O.: (504)280-6846(phone);(504)280-3185(fax);coconnor@uno.edu (e-mail). 3893 Chem. Rev. 2004, 104, 3893−3946

2,621 citations

Journal ArticleDOI
TL;DR: In this paper, the fundamental mechanism of heterogeneous photocatalysis, advantages, challenges and the design considerations of g-C3N4-based photocatalysts are summarized, including their crystal structural, surface phisicochemical, stability, optical, adsorption, electrochemical, photoelectrochemical and electronic properties.

2,132 citations

Journal ArticleDOI
TL;DR: In this article, a review summarizes the recent significant progress on the design of g-C3N4-based heterostructured photocatalysts and their special separation/transfer mechanisms of photogenerated charge carriers.
Abstract: Photocatalysis is considered as one of the promising routes to solve the energy and environmental crises by utilizing solar energy. Graphitic carbon nitride (g-C3N4) has attracted worldwide attention due to its visible-light activity, facile synthesis from low-cost materials, chemical stability, and unique layered structure. However, the pure g-C3N4 photocatalyst still suffers from its low separation efficiency of photogenerated charge carriers, which results in unsatisfactory photocatalytic activity. Recently, g-C3N4-based heterostructures have become research hotspots for their greatly enhanced charge carrier separation efficiency and photocatalytic performance. According to the different transfer mechanisms of photogenerated charge carriers between g-C3N4 and the coupled components, the g-C3N4-based heterostructured photocatalysts can be divided into the following categories: g-C3N4-based conventional type II heterojunction, g-C3N4-based Z-scheme heterojunction, g-C3N4-based p–n heterojunction, g-C3N4/metal heterostructure, and g-C3N4/carbon heterostructure. This review summarizes the recent significant progress on the design of g-C3N4-based heterostructured photocatalysts and their special separation/transfer mechanisms of photogenerated charge carriers. Moreover, their applications in environmental and energy fields, e.g., water splitting, carbon dioxide reduction, and degradation of pollutants, are also reviewed. Finally, some concluding remarks and perspectives on the challenges and opportunities for exploring advanced g-C3N4-based heterostructured photocatalysts are presented.

1,759 citations