scispace - formally typeset
Search or ask a question
Author

Jung Whan Kim

Bio: Jung Whan Kim is an academic researcher from University of Texas at Dallas. The author has contributed to research in topics: Transcription factor & Pyruvate dehydrogenase kinase. The author has an hindex of 30, co-authored 52 publications receiving 10410 citations. Previous affiliations of Jung Whan Kim include Johns Hopkins University School of Medicine & University of California, Los Angeles.


Papers
More filters
Journal ArticleDOI
TL;DR: A hypoxia-induced metabolic switch that shunts glucose metabolites from the mitochondria to glycolysis to maintain ATP production and to prevent toxic ROS production is revealed.

3,193 citations

Journal ArticleDOI
TL;DR: Molecular advances in this area may reveal tactics to exploit the cancer cell's "sweet tooth" for cancer therapy and renewed discussions about its exact role as cause, correlate, or facilitator of cancer.
Abstract: More than 80 years ago, the renowned biochemist Otto Warburg described how cancer cells avidly consume glucose and produce lactic acid under aerobic conditions. Recent studies arguing that cancer cells benefit from this phenomenon, termed the Warburg effect, have renewed discussions about its exact role as cause, correlate, or facilitator of cancer. Molecular advances in this area may reveal tactics to exploit the cancer cell's "sweet tooth" for cancer therapy.

1,204 citations

Journal ArticleDOI
06 Apr 2007-Cell
TL;DR: The effects of manipulating COX4 subunit expression on COX activity, ATP production, O(2) consumption, and reactive oxygen species generation indicate that the COX 4 subunit switch is a homeostatic response that optimizes the efficiency of respiration at different O( 2) concentrations.

1,105 citations

Journal ArticleDOI
TL;DR: The existence of multifaceted roles of glycolytic proteins suggests that links between metabolic sensors and transcription are established directly through enzymes that participate in metabolism.

632 citations

Journal ArticleDOI
TL;DR: It is found that Myc binds the TFAM gene, which encodes a key transcriptional regulator and mitochondrial DNA replication factor, both in P493-6 lymphocytes with high ectopic MYC expression and in serum-stimulated primary human 2091 fibroblasts with induced endogenous MYC, which supports a pivotal role for Myc in regulating mitochondrial biogenesis.
Abstract: Although several genes involved in mitochondrial function are direct Myc targets, the role of Myc in mitochondrial biogenesis has not been directly established. We determined the effects of ectopic Myc expression or the loss of Myc on mitochondrial biogenesis. Induction of Myc in P493-6 cells resulted in increased oxygen consumption and mitochondrial mass and function. Conversely, compared to wild-type Myc fibroblasts, Myc null rat fibroblasts have diminished mitochondrial mass and decreased number of normal mitochondria. Reconstitution of Myc expression in Myc null fibroblasts partially restored mitochondrial mass and function and normal-appearing mitochondria. Concordantly, we also observed in primary hepatocytes that acute deletion of floxed murine Myc by Cre recombinase resulted in diminished mitochondrial mass in primary hepatocytes. Our microarray analysis of genes responsive to Myc in human P493-6 B lymphocytes supports a role for Myc in mitochondrial biogenesis, since genes involved in mitochondrial structure and function are overrepresented among the Myc-induced genes. In addition to the known direct binding of Myc to many genes involved in mitochondrial structure and function, we found that Myc binds the TFAM gene, which encodes a key transcriptional regulator and mitochondrial DNA replication factor, both in P493-6 lymphocytes with high ectopic MYC expression and in serum-stimulated primary human 2091 fibroblasts with induced endogenous MYC. These observations support a pivotal role for Myc in regulating mitochondrial biogenesis.

575 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The identification of mechanisms and molecules associated with macrophage plasticity and polarized activation provides a basis for Macrophage-centered diagnostic and therapeutic strategies.
Abstract: Diversity and plasticity are hallmarks of cells of the monocyte-macrophage lineage. In response to IFNs, Toll-like receptor engagement, or IL-4/IL-13 signaling, macrophages undergo M1 (classical) or M2 (alternative) activation, which represent extremes of a continuum in a universe of activation states. Progress has now been made in defining the signaling pathways, transcriptional networks, and epigenetic mechanisms underlying M1-M2 or M2-like polarized activation. Functional skewing of mononuclear phagocytes occurs in vivo under physiological conditions (e.g., ontogenesis and pregnancy) and in pathology (allergic and chronic inflammation, tissue repair, infection, and cancer). However, in selected preclinical and clinical conditions, coexistence of cells in different activation states and unique or mixed phenotypes have been observed, a reflection of dynamic changes and complex tissue-derived signals. The identification of mechanisms and molecules associated with macrophage plasticity and polarized activation provides a basis for macrophage-centered diagnostic and therapeutic strategies.

4,721 citations

01 Feb 2015
TL;DR: In this article, the authors describe the integrative analysis of 111 reference human epigenomes generated as part of the NIH Roadmap Epigenomics Consortium, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression.
Abstract: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

4,409 citations

Journal ArticleDOI
TL;DR: Interest in the topic of tumour metabolism has waxed and waned over the past century, but it has become clear that many of the signalling pathways that are affected by genetic mutations and the tumour microenvironment have a profound effect on core metabolism, making this topic once again one of the most intense areas of research in cancer biology.
Abstract: Interest in the topic of tumour metabolism has waxed and waned over the past century of cancer research. The early observations of Warburg and his contemporaries established that there are fundamental differences in the central metabolic pathways operating in malignant tissue. However, the initial hypotheses that were based on these observations proved inadequate to explain tumorigenesis, and the oncogene revolution pushed tumour metabolism to the margins of cancer research. In recent years, interest has been renewed as it has become clear that many of the signalling pathways that are affected by genetic mutations and the tumour microenvironment have a profound effect on core metabolism, making this topic once again one of the most intense areas of research in cancer biology.

4,169 citations

Journal ArticleDOI
25 Mar 2011-Science
TL;DR: It is suggested that metastasis can be portrayed as a two-phase process: the first phase involves the physical translocation of a cancer cell to a distant organ, whereas the second encompasses the ability of the cancer cellto develop into a metastatic lesion at that distant site.
Abstract: Metastasis causes most cancer deaths, yet this process remains one of the most enigmatic aspects of the disease. Building on new mechanistic insights emerging from recent research, we offer our perspective on the metastatic process and reflect on possible paths of future exploration. We suggest that metastasis can be portrayed as a two-phase process: The first phase involves the physical translocation of a cancer cell to a distant organ, whereas the second encompasses the ability of the cancer cell to develop into a metastatic lesion at that distant site. Although much remains to be learned about the second phase, we feel that an understanding of the first phase is now within sight, due in part to a better understanding of how cancer cell behavior can be modified by a cell-biological program called the epithelial-to-mesenchymal transition.

3,993 citations