scispace - formally typeset
Search or ask a question
Author

Junhwa Seong

Bio: Junhwa Seong is an academic researcher from Pohang University of Science and Technology. The author has contributed to research in topics: Materials science & Optoelectronics. The author has an hindex of 1, co-authored 1 publications receiving 5 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper , a simple asymmetric spin-orbit interaction (SOI)-based technique is realized for multifunctional metaoptics, employing only a single unit cell, breaking the conventional tradeoff between design complexity and efficient asymmetric transmission efficiency.
Abstract: Symmetric spin–orbit interaction (SOI)‐based approaches apply a practical limit on helicity multiplexed metaoptics, i.e., center symmetric information encoding. Contrarily, asymmetric SOI's based on the combination of geometric and propagation phase‐delay approaches can effectively address such limitations for multifunctional multiplexed metaoptics on the cost of design complexities. In this paper, a simple asymmetric SOI‐based technique is realized for multifunctional metaoptics, employing only a single unit cell, breaking the conventional tradeoff between design complexity and efficient asymmetric transmission efficiency. The design approach depends on geometric phase alone, which eases the fabrication challenges and decreases the computational cost associated with previous asymmetric SOI‐based metaoptics. Furthermore, this study utilizes a new, low‐cost CMOS‐compatible material to optimize the proposed single unit cell for low loss and high transmission efficiency over the complete visible domain. On‐axis and off‐axis holographic metasurfaces are designed and integrated with pressure‐sensitive liquid crystal cells to demonstrate actively tunable metaholography with no limitation of center symmetric information encoding. The simple design technique, cost‐effective fabrication, and finger touch‐enabled holographic output switching make this integrated setup a potential candidate for many applications such as smart safety labeling, motion or touch recognition, and interactive displays for impact monitoring of precious artworks and products.

66 citations

Journal ArticleDOI
19 Feb 2022-ACS Nano
TL;DR: In this article , a dual-band vectorial metahologram in the visible and ultraviolet (UV) regimes for optical encryption was proposed. But the proposed scheme is limited to the use of a pixelated metasurface.
Abstract: Metasurface-driven optical encryption devices have attracted much attention. Here, we propose a dual-band vectorial metahologram in the visible and ultraviolet (UV) regimes for optical encryption. Nine polarization-encoded vectorial holograms are observed under UV laser illumination, while another independent hologram appears under visible laser illumination. The proposed engineered silicon nitride, which is transparent in UV, is employed to demonstrate the UV hologram. Nine holographic images for different polarization states are encoded using a pixelated metasurface. The dual-band metahologram is experimentally implemented by stacking the individual metasurfaces that operate in the UV and visible. The visible hologram can be decrypted to provide the first key, a polarization state, which is used to decode the password hidden in the UV vectorial hologram through the use of an analyzer. Considering the property of UV to be invisible to the naked eye, the multiple polarization channels of the vectorial hologram, and the dual-band decoupling, the demonstrated dual-band vectorial hologram device could be applied in various high-security and anticounterfeiting applications.

61 citations

Journal ArticleDOI
TL;DR: In this article , a wideband thermophotovoltaics (STPV) system consisting of an absorber and an emitter pair achieving high absorptance of solar radiation within the range of 400-1500 nm (covering the visible and infrared regions), whereas the emitter achieves an emittance of >95% at a wavelength of 2.3 μm.
Abstract: The efficiency of traditional solar cells is constrained due to the Shockley-Queisser limit, to circumvent this theoretical limit, the concept of solar thermophotovoltaics (STPVs) has been introduced. The typical design of an STPV system consists of a wideband absorber with its front side facing the sun. The back of this absorber is physically attached to the back of a selective emitter facing a low-bandgap photovoltaic (PV) cell. We demonstrate an STPV system consisting of a wideband absorber and emitter pair achieving a high absorptance of solar radiation within the range of 400-1500 nm (covering the visible and infrared regions), whereas the emitter achieves an emittance of >95% at a wavelength of 2.3 μm. This wavelength corresponds to the bandgap energy of InGaAsSb (0.54 eV), which is the targeted PV cell technology for our STPV system design. The material used for both the absorber and the emitter is chromium due to its high melting temperature of 2200 K. An absorber and emitter pair is also fabricated and the measured results are in agreement with the simulated results. The design achieves an overall solar-to-electrical simulated efficiency of 21% at a moderate temperature of 1573 K with a solar concentration of 3000 suns. Furthermore, an efficiency of 15% can be achieved at a low temperature of 873 K with a solar concentration of 500 suns. The designs are also insensitive to polarization and show negligible degradation in solar absorptance and thermal emittance with a change in the angle of incidence.

49 citations

Journal ArticleDOI
TL;DR: In this paper , a planar all-dielectric metasurface is proposed incorporating extra degrees of freedom to comprehend the conversion of amplitude, polarization, and phase with broadband chiro-optical effects in terms of giant asymmetric transmission with maximum efficiency of ≈77% at the wavelength of 567 nm.
Abstract: Futuristic holographic displays will essentially require broadband chiro‐optical effects for medical imaging, virtual reality, smart security, and optical encryption. However, conventional metasurfaces cannot provide such on‐chip realization of broadband chiro‐optical effects. Moreover, the simultaneous conversion of amplitude, polarization, and phase (APP) at optical wavelengths to introduce giant chirality has not been realized yet. In this paper, a planar all‐dielectric metasurface is proposed incorporating extra degrees of freedom to comprehend the conversion of APP with broadband chiro‐optical effects in terms of giant asymmetric transmission with maximum efficiency of ≈77% at the wavelength of 567 nm. The underlying mechanism behind induced chiro‐optical effects is also investigated using higher‐order multipolar dielectric resonances. Moreover, experimental validation is performed using the reproduced polarization‐encrypted meta‐holograms at broadband visible wavelengths. This work expands the scope of meta‐nanophotonics with potential applications in bioimaging and polarization‐encrypted displays for healthcare and smart security applications.

36 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper , a simple asymmetric spin-orbit interaction (SOI)-based technique is realized for multifunctional metaoptics, employing only a single unit cell, breaking the conventional tradeoff between design complexity and efficient asymmetric transmission efficiency.
Abstract: Symmetric spin–orbit interaction (SOI)‐based approaches apply a practical limit on helicity multiplexed metaoptics, i.e., center symmetric information encoding. Contrarily, asymmetric SOI's based on the combination of geometric and propagation phase‐delay approaches can effectively address such limitations for multifunctional multiplexed metaoptics on the cost of design complexities. In this paper, a simple asymmetric SOI‐based technique is realized for multifunctional metaoptics, employing only a single unit cell, breaking the conventional tradeoff between design complexity and efficient asymmetric transmission efficiency. The design approach depends on geometric phase alone, which eases the fabrication challenges and decreases the computational cost associated with previous asymmetric SOI‐based metaoptics. Furthermore, this study utilizes a new, low‐cost CMOS‐compatible material to optimize the proposed single unit cell for low loss and high transmission efficiency over the complete visible domain. On‐axis and off‐axis holographic metasurfaces are designed and integrated with pressure‐sensitive liquid crystal cells to demonstrate actively tunable metaholography with no limitation of center symmetric information encoding. The simple design technique, cost‐effective fabrication, and finger touch‐enabled holographic output switching make this integrated setup a potential candidate for many applications such as smart safety labeling, motion or touch recognition, and interactive displays for impact monitoring of precious artworks and products.

66 citations

Journal ArticleDOI
TL;DR: In this paper, an electrically controllable bifocal metalens at visible wavelengths by incorporating a metasurface designed to focus light at two different focal lengths, with liquid crystals to actively manipulate the focal length of the metalens through the application of an external bias.
Abstract: Tunable optical devices powered by metasurfaces provide a new path for functional planar optics. In particular, lenses with tunable focal lengths can play a key role in various fields with applications in imaging, displays, and augmented and virtual reality devices. Here, the authors demonstrate an electrically controllable bifocal metalens at visible wavelengths by incorporating a metasurface designed to focus light at two different focal lengths, with liquid crystals to actively manipulate the focal length of the metalens through the application of an external bias. By utilizing hydrogenated amorphous silicon that is optimized to provide an extremely low extinction coefficient in the visible regime, the metalens is highly efficient with measured focusing efficiencies of around 44%. They numerically design and experimentally realize and characterize tunable focusing and demonstrate electrically tunable active imaging at visible wavelengths using the bifocal metalens combined with liquid crystals. Diffraction limited focusing and imaging is verified through the analysis of the measured optical intensities at the focal points and the modulation transfer function. The bifocal metalens is used to demonstrate electrically modulated focus switching between the two designed focal planes, to display images of positive and negative target objects.

62 citations

Journal ArticleDOI
TL;DR: In this paper , an electrically tunable metasurface that can represent saturated red, green, and blue pixels that can be dynamically and continuously controlled between on and off states using liquid crystals is presented.
Abstract: Abstract Taking inspiration from beautiful colors in nature, structural colors produced from nanostructured metasurfaces have shown great promise as a platform for bright, highly saturated, and high-resolution colors. Both plasmonic and dielectric materials have been employed to produce static colors that fulfil the required criteria for high-performance color printing, however, for practical applications in dynamic situations, a form of tunability is desirable. Combinations of the additive color palette of red, green, and blue enable the expression of further colors beyond the three primary colors, while the simultaneous intensity modulation allows access to the full color gamut. Here, we demonstrate an electrically tunable metasurface that can represent saturated red, green, and blue pixels that can be dynamically and continuously controlled between on and off states using liquid crystals. We use this to experimentally realize ultrahigh-resolution color printing, active multicolor cryptographic applications, and tunable pixels toward high-performance full-color reflective displays.

51 citations

Journal ArticleDOI
TL;DR: In this article , a wideband thermophotovoltaics (STPV) system consisting of an absorber and an emitter pair achieving high absorptance of solar radiation within the range of 400-1500 nm (covering the visible and infrared regions), whereas the emitter achieves an emittance of >95% at a wavelength of 2.3 μm.
Abstract: The efficiency of traditional solar cells is constrained due to the Shockley-Queisser limit, to circumvent this theoretical limit, the concept of solar thermophotovoltaics (STPVs) has been introduced. The typical design of an STPV system consists of a wideband absorber with its front side facing the sun. The back of this absorber is physically attached to the back of a selective emitter facing a low-bandgap photovoltaic (PV) cell. We demonstrate an STPV system consisting of a wideband absorber and emitter pair achieving a high absorptance of solar radiation within the range of 400-1500 nm (covering the visible and infrared regions), whereas the emitter achieves an emittance of >95% at a wavelength of 2.3 μm. This wavelength corresponds to the bandgap energy of InGaAsSb (0.54 eV), which is the targeted PV cell technology for our STPV system design. The material used for both the absorber and the emitter is chromium due to its high melting temperature of 2200 K. An absorber and emitter pair is also fabricated and the measured results are in agreement with the simulated results. The design achieves an overall solar-to-electrical simulated efficiency of 21% at a moderate temperature of 1573 K with a solar concentration of 3000 suns. Furthermore, an efficiency of 15% can be achieved at a low temperature of 873 K with a solar concentration of 500 suns. The designs are also insensitive to polarization and show negligible degradation in solar absorptance and thermal emittance with a change in the angle of incidence.

49 citations

Journal ArticleDOI
TL;DR: In this paper , an electrically tunable metasurface that can represent saturated red, green, and blue pixels that can be dynamically and continuously controlled between on and off states using liquid crystals is presented.
Abstract: Abstract Taking inspiration from beautiful colors in nature, structural colors produced from nanostructured metasurfaces have shown great promise as a platform for bright, highly saturated, and high-resolution colors. Both plasmonic and dielectric materials have been employed to produce static colors that fulfil the required criteria for high-performance color printing, however, for practical applications in dynamic situations, a form of tunability is desirable. Combinations of the additive color palette of red, green, and blue enable the expression of further colors beyond the three primary colors, while the simultaneous intensity modulation allows access to the full color gamut. Here, we demonstrate an electrically tunable metasurface that can represent saturated red, green, and blue pixels that can be dynamically and continuously controlled between on and off states using liquid crystals. We use this to experimentally realize ultrahigh-resolution color printing, active multicolor cryptographic applications, and tunable pixels toward high-performance full-color reflective displays.

45 citations