scispace - formally typeset
Search or ask a question
Author

Junji Hisano

Bio: Junji Hisano is an academic researcher from Nagoya University. The author has contributed to research in topics: Supersymmetry & Dark matter. The author has an hindex of 55, co-authored 179 publications receiving 10568 citations. Previous affiliations of Junji Hisano include Institute for the Physics and Mathematics of the Universe & KEK.


Papers
More filters
Journal ArticleDOI
TL;DR: Various lepton-flavor-violating (LFV) processes in the supersymmetric standard model with right-handed neutrino supermultiplets are investigated in detail and it is shown that large LFV rates are obtained when $tan\ensuremath{\beta}$ is large.
Abstract: Various lepton-flavor-violating (LFV) processes in the supersymmetric standard model with right-handed neutrino supermultiplets are investigated in detail. It is shown that large LFV rates are obtained when $tan\ensuremath{\beta}$ is large. In the case where the mixing matrix in the lepton sector has a similar structure as the Kobayashi-Maskawa matrix and the third-generation Yukawa coupling is as large as that of the top quark, the branching ratios can be as large as $B(\ensuremath{\mu}\ensuremath{\rightarrow}e\ensuremath{\gamma})\ensuremath{\simeq}{10}^{\ensuremath{-}11}$ and $B(\ensuremath{\tau}\ensuremath{\rightarrow}\ensuremath{\mu}\ensuremath{\gamma})\ensuremath{\simeq}{10}^{\ensuremath{-}7}$, which are within the reach of future experiments. If we assume a large mixing angle solution to the atmospheric neutrino problem, the rate for the process $\ensuremath{\tau}\ensuremath{\rightarrow}\ensuremath{\mu}\ensuremath{\gamma}$ becomes larger. We also discuss the difference between our case and the case of the minimal SU(5) grand unified theory.

626 citations

Journal ArticleDOI
TL;DR: In this paper, the authors evaluate the gamma ray flux in the case that the dark matter has an electroweak SU(2)_L charge in the minimal supersymmetric standard model (MSSM) when the lightest SUSY particle is the Higgsino- or Wino-like neutralino.
Abstract: Detection of gamma rays from dark matter annihilation in the galactic center is one of the feasible techniques to search for dark matter. We evaluate the gamma ray flux in the case that the dark matter has an electroweak SU(2)_L charge. Such dark matter is realized in the minimal supersymmetric standard model (MSSM) when the lightest SUSY particle is the Higgsino- or Wino-like neutralino. When the dark matter is heavy compared to the weak gauge bosons, the leading-order calculation of the annihilation cross sections in perturbation breaks down due to a threshold singularity. We take into account non-perturbative effects by using the non-relativistic effective theory for the two-body states of the dark matter and its SU(2)_L partner(s), and evaluate precise cross sections relevant to the gamma ray fluxes. We find that the annihilation cross sections may be enhanced by several orders of magnitude due to resonances when the dark matter mass is larger than 1 TeV. Furthermore, the annihilation cross sections in the MSSM may be changed by factors even when the mass is about 500 GeV. We also discuss sensitivities to gamma ray signals from the galactic center in the GLAST satellite detector and the large Air Cerenkov Telescope arrays.

612 citations

Journal ArticleDOI
TL;DR: In the current Universe, in which the DM is highly nonrelativistic, the nonperturbative effect may enhance the DM annihilation cross sections, especially for that to two photons, by several orders of magnitude.
Abstract: In this Letter we study pair annihilation processes of dark matter (DM) in the Universe, in the case that the DM is an electroweak gauge nonsinglet. In the current Universe, in which the DM is highly nonrelativistic, the nonperturbative effect may enhance the DM annihilation cross sections, especially for that to two photons, by several orders of magnitude. We also discuss sensitivities in future searches for anomalous gamma rays from the galactic center, which originate from DM annihilation.

496 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that the thermal relic abundance of the dark matter is strongly altered by a non-perturbative effect called the Sommerfeld enhancement, when constituent particles are non-singlet under the SU(2)L gauge interaction and much heavier than the weak gauge bosons.

451 citations

Journal ArticleDOI
Georg Weiglein1, Sami Lehti2, Geneviève Bélanger, Tao Han3, David L. Rainwater4, Massimiliano Chiorboli5, Michael Ratz, M. Schumacher6, P. Niezurawski7, Stefano Moretti8, Filip Moortgat9, S. J. Asztalos10, Rohini M. Godbole11, Abdelhak Djouadi12, G. Polesello9, Werner Porod13, Werner Porod14, A.A. Giolo-Nicollerat15, Alessia Tricomi5, J.L. Hewett16, M. Szleper17, L. Zivkovic18, Stephen Godfrey19, Maria Krawczyk7, Klaus Desch20, Alexander Sherstnev21, Dimitri Bourilkov22, A. G. Akeroyd, Dirk Zerwas, M. Muhlleitner23, T. Binoth24, Maria Spiropulu9, Alexander Nikitenko25, A. Krokhotine, V. Bunichev21, Tadas Krupovnickas26, Peter Wienemann, T. Hurth16, T. Hurth9, A. De Roeck9, S. De Curtis27, Ritva Kinnunen2, D. Grellscheid28, U. Baur29, J. Kalinowski7, Gudrid Moortgat-Pick1, Gudrid Moortgat-Pick9, H. U. Martyn30, Alexander Pukhov21, C. Hugonie13, U. Ellwanger, Daniel Tovey31, Aleksander Filip Zarnecki7, Thomas G. Rizzo16, S. Slabospitsky, Jonathan L. Feng32, Remi Lafaye33, Sally Dawson34, Diaz23, Philip Bechtle20, I.F. Ginzburg, Hooman Davoudiasl, Andreas Redelbach24, J. Jiang35, W. J. Stirling1, Reinhold Rückl24, Per Osland36, S. Weinzierl37, Fernando Quevedo38, Laura Reina26, Timothy Barklow16, H. J. Schreiber, Andre Sopczak39, Wilfried Buchmuller, Howard E. Haber40, H. Pas24, E. Lytken41, Xerxes Tata, Howard Baer26, Tsutomu T. Yanagida42, Sabine Kraml43, Sabine Kraml9, Mayda Velasco17, Francois Richard, E. K. U. Gross6, A.F. Osorio44, J. Guasch23, Fawzi Boudjema, Stewart Boogert45, Sven Heinemeyer9, Sabine Riemann, D. Asner18, Daniele Dominici27, Victoria Jane Martin46, J.F. Gunion47, Marco Battaglia48, Michael Spira23, Doreen Wackeroth29, David J. Miller49, David J. Miller46, Joan Sola50, J. Gronberg10, Zack Sullivan, A. Juste, Lynne H. Orr4, Wolfgang Hollik51, Heather E. Logan3, Benjamin C. Allanach38, Junji Hisano42, Carlos E. M. Wagner52, Carlos E. M. Wagner35, Frank F. Deppisch24, Tilman Plehn9, F. Gianotti9, Gianluca Cerminara53, G.A. Blair54, Wolfgang Kilian, Michael Dittmar15, E. E. Boos21, Kiyotomo Kawagoe55, Alexander Belyaev26, Koichi Hamaguchi, Børge Kile Gjelsten56, Tim M. P. Tait, Klaus Mönig, Edmond L. Berger35, P.M. Zerwas, Mihoko M. Nojiri57 
Durham University1, University of Helsinki2, University of Wisconsin-Madison3, University of Rochester4, University of Catania5, Weizmann Institute of Science6, University of Warsaw7, University of Southampton8, CERN9, Lawrence Livermore National Laboratory10, Indian Institute of Science11, University of Montpellier12, Spanish National Research Council13, University of Zurich14, ETH Zurich15, Stanford University16, Northwestern University17, University of Pittsburgh18, Carleton University19, University of Hamburg20, Moscow State University21, University of Florida22, Paul Scherrer Institute23, University of Würzburg24, Imperial College London25, Florida State University26, University of Florence27, University of Bonn28, University at Buffalo29, RWTH Aachen University30, University of Sheffield31, University of California, Irvine32, Laboratoire d'Annecy-le-Vieux de physique des particules33, Brookhaven National Laboratory34, Argonne National Laboratory35, University of Bergen36, University of Mainz37, Centers for Medicare and Medicaid Services38, Lancaster University39, University of California, Santa Cruz40, University of Copenhagen41, University of Tokyo42, Austrian Academy of Sciences43, University of Manchester44, University College London45, University of Edinburgh46, University of California, Davis47, University of California, Berkeley48, University of Glasgow49, University of Barcelona50, Max Planck Society51, University of Chicago52, University of Turin53, Royal Holloway, University of London54, Kobe University55, University of Oslo56, Kyoto University57
TL;DR: In this paper, the authors discuss the possible interplay between the Large Hadron Collider (LHC) and the International e(+)e(-) Linear Collider (ILC) in testing the Standard Model and in discovering and determining the origin of new physics.

422 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: In this article, the neutralino is considered as a superpartner in many supersymmetric theories, and the cosmological abundance of neutralino and the event rates for both direct and indirect detection schemes are discussed.
Abstract: There is almost universal agreement among astronomers that most of the mass in the Universe and most of the mass in the Galactic halo is dark. Many lines of reasoning suggest that the dark matter consists of some new, as yet undiscovered, weakly-interacting massive particle (WIMP). There is now a vast experimental effort being surmounted to detect WIMPS in the halo. The most promising techniques involve direct detection in low-background laboratory detectors and indirect detection through observation of energetic neutrinos from annihilation of WIMPs that have accumulated in the Sun and/or the Earth. Of the many WIMP candidates, perhaps the best motivated and certainly the most theoretically developed is the neutralino, the lightest superpartner in many supersymmetric theories. We review the minimal supersymmetric extension of the Standard Model and discuss prospects for detection of neutralino dark matter. We review in detail how to calculate the cosmological abundance of the neutralino and the event rates for both direct- and indirect-detection schemes, and we discuss astrophysical and laboratory constraints on supersymmetric models. We isolate and clarify the uncertainties from particle physics, nuclear physics, and astrophysics that enter at each step in the calculation. We briefly review other related dark-matter candidates and detection techniques.

2,047 citations

Journal ArticleDOI
TL;DR: In this article, the neutralino is proposed as the lightest superpartner in many supersymmetric theories, and it is shown how to calculate the cosmological abundance of neutralino and event rates for both direct and indirect detection schemes.

1,670 citations

01 Apr 2003
TL;DR: In this paper, the authors measured the flux of neutrino from distant nuclear reactors and found fewer nu;(e) events than expected from standard assumptions about nu; (e) propagation at the 99.95% C.L.yr exposure.
Abstract: KamLAND has measured the flux of nu;(e)'s from distant nuclear reactors. We find fewer nu;(e) events than expected from standard assumptions about nu;(e) propagation at the 99.95% C.L. In a 162 ton.yr exposure the ratio of the observed inverse beta-decay events to the expected number without nu;(e) disappearance is 0.611+/-0.085(stat)+/-0.041(syst) for nu;(e) energies >3.4 MeV. In the context of two-flavor neutrino oscillations with CPT invariance, all solutions to the solar neutrino problem except for the "large mixing angle" region are excluded.

1,659 citations

Journal Article
TL;DR: In this paper, the subject of quantum electrodynamics is presented in a new form, which may be dealt with in two ways: using redundant variables and using a direct physical interpretation.
Abstract: THE subject of quantum electrodynamics is extremely difficult, even for the case of a single electron. The usual method of solving the corresponding wave equation leads to divergent integrals. To avoid these, Prof. P. A. M. Dirac* uses the method of redundant variables. This does not abolish the difficulty, but presents it in a new form, which may be dealt with in two ways. The first of these needs only comparatively simple mathematics and is directly connected with an elegant general scheme, but unfortunately its wave functions apply only to a hypothetical world and so its physical interpretation is indirect. The second way has the advantage of a direct physical interpretation, but the mathematics is so complicated that it has not yet been solved even for what appears to be the simplest possible case. Both methods seem worth further study, failing the discovery of a third which would combine the advantages of both.

1,398 citations