scispace - formally typeset
Search or ask a question
Author

Junwei Qiao

Bio: Junwei Qiao is an academic researcher from Taiyuan University of Technology. The author has contributed to research in topics: High entropy alloys & Alloy. The author has an hindex of 29, co-authored 103 publications receiving 2610 citations. Previous affiliations of Junwei Qiao include University of Science and Technology Beijing.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the development, fabrication, microstructures, and properties of MGMCs, including the room-temperature, cryogenictemperature and hightemperature mechanical properties upon quasi-static and dynamic loadings are reviewed.
Abstract: The mechanical properties of ex-situ and in-situ metallic glass matrix composites (MGMCs) have proven to be both scientifically unique and of potentially important for practical applications. However, the underlying deformation mechanisms remain to be studied. In this article, we review the development, fabrication, microstructures, and properties of MGMCs, including the room-temperature, cryogenic-temperature, and high-temperature mechanical properties upon quasi-static and dynamic loadings. In parallel, the deformation mechanisms are experimentally and theoretically explored. Moreover, the fatigue, corrosion, and wear behaviors of MGMCs are discussed. Finally, the potential applications and important unresolved issues are identified and discussed.

409 citations

Journal ArticleDOI
TL;DR: In this article, the formation of as-cast arc-melted body-centered cubic MoNbTaTiV was experimentally verified using X-ray diffraction and scanning electron microscopy.

275 citations

Journal ArticleDOI
TL;DR: In this paper, a dual-phase bulk metallic glass matrix composite (BMGMC) with a homogeneous distribution of dendrites and the composition of Ti 46 Zr 20 V 12 Cu 5 Be 17 is characterized by a high tensile strength of ∼1640 MPa and a large tensile strain of ∼15.5% at room temperature.

262 citations

Journal ArticleDOI
TL;DR: In this paper, the microstructure and tribological properties of the nitrided layer and as-cast high-entropy alloy were studied at dry sliding condition, deionized water and acid rain, respectively.

149 citations

Journal ArticleDOI
TL;DR: A quantitative theory for the serration behavior of BMGs is presented, showing remarkable quantitative agreement with the slip statistics of slowly-compressed nanocrystals, and implying that material-evaluation methods based on slip statistics apply to both crystalline and BMG materials.
Abstract: Ingots of the bulk metallic glass (BMG), Zr64.13Cu15.75Ni10.12Al10 in atomic percent (at. %), are compressed at slow strain rates. The deformation behavior is characterized by discrete, jerky stress-drop bursts (serrations). Here we present a quantitative theory for the serration behavior of BMGs, which is a critical issue for the understanding of the deformation characteristics of BMGs. The mean-field interaction model predicts the scaling behavior of the distribution, D(S), of avalanche sizes, S, in the experiments. D(S) follows a power law multiplied by an exponentially-decaying scaling function. The size of the largest observed avalanche depends on experimental tuning-parameters, such as either imposed strain rate or stress. Similar to crystalline materials, the plasticity of BMGs reflects tuned criticality showing remarkable quantitative agreement with the slip statistics of slowly-compressed nanocrystals. The results imply that material-evaluation methods based on slip statistics apply to both crystalline and BMG materials.

119 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: The concept of high entropy introduces a new path of developing advanced materials with unique properties, which cannot be achieved by the conventional micro-alloying approach based on only one dominant element as mentioned in this paper.

4,394 citations

Journal ArticleDOI
TL;DR: This Review discusses model high-entropy alloys with interesting properties, the physical mechanisms responsible for their behaviour and fruitful ways to probe and discover new materials in the vast compositional space that remains to be explored.
Abstract: Alloying has long been used to confer desirable properties to materials. Typically, it involves the addition of relatively small amounts of secondary elements to a primary element. For the past decade and a half, however, a new alloying strategy that involves the combination of multiple principal elements in high concentrations to create new materials called high-entropy alloys has been in vogue. The multi-dimensional compositional space that can be tackled with this approach is practically limitless, and only tiny regions have been investigated so far. Nevertheless, a few high-entropy alloys have already been shown to possess exceptional properties, exceeding those of conventional alloys, and other outstanding high-entropy alloys are likely to be discovered in the future. Here, we review recent progress in understanding the salient features of high-entropy alloys. Model alloys whose behaviour has been carefully investigated are highlighted and their fundamental properties and underlying elementary mechanisms discussed. We also address the vast compositional space that remains to be explored and outline fruitful ways to identify regions within this space where high-entropy alloys with potentially interesting properties may be lurking. High-entropy alloys have greatly expanded the compositional space for alloy design. In this Review, the authors discuss model high-entropy alloys with interesting properties, the physical mechanisms responsible for their behaviour and fruitful ways to probe and discover new materials in the vast compositional space that remains to be explored.

1,798 citations