scispace - formally typeset
Search or ask a question
Author

Junwei Zhao

Bio: Junwei Zhao is an academic researcher from Stanford University. The author has contributed to research in topics: Helioseismology & Sunspot. The author has an hindex of 32, co-authored 104 publications receiving 5039 citations. Previous affiliations of Junwei Zhao include New Jersey Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: The Helioseismic and Magnetic Imager (HMI) instrument and investigation as a part of the NASA Solar Dynamics Observatory (SDO) is designed to study convection-zone dynamics and the solar dynamo, the origin and evolution of sunspots, active regions, and complexes of activity, the sources and drivers of solar magnetic activity and disturbances as mentioned in this paper.
Abstract: The Helioseismic and Magnetic Imager (HMI) instrument and investigation as a part of the NASA Solar Dynamics Observatory (SDO) is designed to study convection-zone dynamics and the solar dynamo, the origin and evolution of sunspots, active regions, and complexes of activity, the sources and drivers of solar magnetic activity and disturbances, links between the internal processes and dynamics of the corona and heliosphere, and precursors of solar disturbances for space-weather forecasts. A brief overview of the instrument, investigation objectives, and standard data products is presented.

2,242 citations

Journal ArticleDOI
TL;DR: In this article, the authors obtained synoptic maps of subsurface plasma-flow fields at a depth of 0-12 Mm for seven solar Carrington rotations, covering the years 1996-2002, from solar activity minimum to maximum.
Abstract: By applying time-distance helioseismology measurements and inversions to Solar and Heliospheric Observatory (SOHO) Michelson Doppler Imager (MDI) dynamics campaign data, we obtain synoptic maps of subsurface plasma-flow fields at a depth of 0-12 Mm for seven solar Carrington rotations, covering the years 1996-2002, from solar-activity minimum to maximum. Vorticity distribution and both zonal and meridional flows are derived from such synoptic flow maps, which contain an enormous amount of information about solar dynamics. The results for the zonal flows agree well with previous results. The meridional flows of an order of 20 m s-1 are found to remain poleward during the whole period of observations. In addition to the poleward meridional flows observed at the solar minimum, extra meridional circulation cells of flow converging toward the activity belts are found in both hemispheres, which may imply plasma downdrafts in the activity belts. These converging flow cells migrate toward the solar equator together with the activity belts as the solar cycle evolves. The vorticity distributions are largely linear with latitude, and the deviations from the vorticity caused by the mean differential rotation are presented. Patterns of large-scale flows are investigated for a large active region at different depths. Converging flows toward the center of the active region are found near the solar surface, and divergent flows in this large active region are found to be rooted much deeper than similar flows observed in individual sunspots. We conclude that the extremely rich and complicated dynamics of the upper convection zone reveal remarkable organization on the large scale, which can be correlated with the magnetic activity zones.

368 citations

Journal ArticleDOI
TL;DR: In this article, the authors analyzed the travel times of acoustic waves that propagate through different depths of the solar interior carrying information about the solar magnetic field dynamics and found that the meridional flow turns poleward again below 0.82 R ☉, indicating an existence of a second meridial circulation cell below the shallower one.
Abstract: Meridional flow in the solar interior plays an important role in redistributing angular momentum and transporting magnetic flux inside the Sun. Although it has long been recognized that the meridional flow is predominantly poleward at the Sun's surface and in its shallow interior, the location of the equatorward return flow and the meridional flow profile in the deeper interior remain unclear. Using the first 2 yr of continuous helioseismology observations from the Solar Dynamics Observatory/Helioseismic Magnetic Imager, we analyze travel times of acoustic waves that propagate through different depths of the solar interior carrying information about the solar interior dynamics. After removing a systematic center-to-limb effect in the helioseismic measurements and performing inversions for flow speed, we find that the poleward meridional flow of a speed of 15 m s–1 extends in depth from the photosphere to about 0.91 R ☉. An equatorward flow of a speed of 10 m s–1 is found between 0.82 and 0.91 R ☉ in the middle of the convection zone. Our analysis also shows evidence of that the meridional flow turns poleward again below 0.82 R ☉, indicating an existence of a second meridional circulation cell below the shallower one. This double-cell meridional circulation profile with an equatorward flow shallower than previously thought suggests a rethinking of how magnetic field is generated and redistributed inside the Sun.

294 citations

Journal ArticleDOI
TL;DR: In this paper, a regularized, damped least-squares inversion is applied to the measurements of travel times to infer mass flows around the sunspot below the solar surface, which may provide observational evidence for the downdrafts and vortex flows that were suggested by Parker for a cluster model of sunspots.
Abstract: A time-distance helioseismic technique is employed to analyze a set of high-resolution Dopplergram observations of a large sunspot by SOHO/MDI on 1998 June 18. A regularized, damped least-squares inversion is applied to the measurements of travel times to infer mass flows around the sunspot below the solar surface. Powerful converging and downward directed flows are detected at depths of 1.5-5 Mm, which may provide observational evidence for the downdrafts and vortex flows that were suggested by Parker for a cluster model of sunspots. Strong outflows extending more than 30 Mm are found below the downward and converging flows. It is suggested that the sunspot might be a relatively shallow phenomenon, with a depth of 5-6 Mm, as defined by its thermal and hydrodynamic properties. A strong mass flow across the sunspot is found at depths of 9-12 Mm, which may provide more evidence in support of the cluster model, as opposed to the monolithic sunspot model. We suggest that a new magnetic emergence that was found 5 hr after our analysis period is related to this mass flow.

211 citations

Journal ArticleDOI
TL;DR: In this article, an arc-shaped wave train of 1-5% intensity variations (lifetime ∼200 s) that emanate near the flare kernel and propagate outward up to ∼400 Mm along a funnel of coronal loops is observed.
Abstract: Quasi-periodic, propagating fast mode magnetosonic waves in the corona were difficult to observe in the past due to relatively low instrument cadences. We report here evidence of such waves directly imaged in EUV by the new SDO AIA instrument. In the 2010 August 1 C3.2 flare/CME event, we find arc-shaped wave trains of 1–5% intensity variations (lifetime ∼200 s) that emanate near the flare kernel and propagate outward up to ∼400 Mm along a funnel of coronal loops. Sinusoidal fits to a typical wave train indicate a phase velocity of 2200 ± 130kms −1 . Similar waves propagating in opposite directions are observed in closed loops between two flare ribbons. In the k–! diagram of the Fourier wave power, we find a bright ridge that represents the dispersion relation and can be well fitted with a straight line passing through the origin. This k–! ridge shows a broad frequency distribution with indicative power at 5.5, 14.5, and 25.1 mHz. The strongest signal at 5.5 mHz (period 181 s) temporally coincides with quasi-periodic pulsations of the flare, suggesting a common origin. The instantaneous wave energy flux of (0.1–2.6)× 10 7 ergs cm −2 s −1 estimated at the coronal base is comparable to the steady-state heating requirement of active region loops. Subject headings: Sun: activity—Sun: corona—Sun: coronal mass ejections—Sun: flares—Sun: oscillations—waves

171 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Helioseismic and Magnetic Imager (HMI) instrument and investigation as a part of the NASA Solar Dynamics Observatory (SDO) is designed to study convection-zone dynamics and the solar dynamo, the origin and evolution of sunspots, active regions, and complexes of activity, the sources and drivers of solar magnetic activity and disturbances as mentioned in this paper.
Abstract: The Helioseismic and Magnetic Imager (HMI) instrument and investigation as a part of the NASA Solar Dynamics Observatory (SDO) is designed to study convection-zone dynamics and the solar dynamo, the origin and evolution of sunspots, active regions, and complexes of activity, the sources and drivers of solar magnetic activity and disturbances, links between the internal processes and dynamics of the corona and heliosphere, and precursors of solar disturbances for space-weather forecasts. A brief overview of the instrument, investigation objectives, and standard data products is presented.

2,242 citations

Journal ArticleDOI
TL;DR: The Helioseismic and Magnetic Imager (HMI) as discussed by the authors was designed to measure the Doppler shift, intensity, and vector magnetic field at the solar photosphere using the 6173 A FeI absorption line.
Abstract: The Helioseismic and Magnetic Imager (HMI) investigation (Solar Phys. doi: 10.1007/s11207-011-9834-2, 2011) will study the solar interior using helioseismic techniques as well as the magnetic field near the solar surface. The HMI instrument is part of the Solar Dynamics Observatory (SDO) that was launched on 11 February 2010. The instrument is designed to measure the Doppler shift, intensity, and vector magnetic field at the solar photosphere using the 6173 A Fe i absorption line. The instrument consists of a front-window filter, a telescope, a set of waveplates for polarimetry, an image-stabilization system, a blocking filter, a five-stage Lyot filter with one tunable element, two wide-field tunable Michelson interferometers, a pair of 40962 pixel cameras with independent shutters, and associated electronics. Each camera takes a full-disk image roughly every 3.75 seconds giving an overall cadence of 45 seconds for the Doppler, intensity, and line-of-sight magnetic-field measurements and a slower cadence for the full vector magnetic field. This article describes the design of the HMI instrument and provides an overview of the pre-launch calibration efforts. Overviews of the investigation, details of the calibrations, data handling, and the science analysis are provided in accompanying articles.

1,997 citations

Journal ArticleDOI
TL;DR: The Interface Region Imaging Spectrograph (IRIS) as mentioned in this paper provides simultaneous spectra and images of the photosphere, chromosphere, transition region, and corona with 0.33 arcsec and up.
Abstract: The Interface Region Imaging Spectrograph (IRIS) small explorer spacecraft provides simultaneous spectra and images of the photosphere, chromosphere, transition region, and corona with 0.33 – 0.4 arcsec spatial resolution, two-second temporal resolution, and 1 km s−1 velocity resolution over a field-of-view of up to 175 arcsec × 175 arcsec. IRIS was launched into a Sun-synchronous orbit on 27 June 2013 using a Pegasus-XL rocket and consists of a 19-cm UV telescope that feeds a slit-based dual-bandpass imaging spectrograph. IRIS obtains spectra in passbands from 1332 – 1358 A, 1389 – 1407 A, and 2783 – 2834 A, including bright spectral lines formed in the chromosphere (Mg ii h 2803 A and Mg ii k 2796 A) and transition region (C ii 1334/1335 A and Si iv 1394/1403 A). Slit-jaw images in four different passbands (C ii 1330, Si iv 1400, Mg ii k 2796, and Mg ii wing 2830 A) can be taken simultaneously with spectral rasters that sample regions up to 130 arcsec × 175 arcsec at a variety of spatial samplings (from 0.33 arcsec and up). IRIS is sensitive to emission from plasma at temperatures between 5000 K and 10 MK and will advance our understanding of the flow of mass and energy through an interface region, formed by the chromosphere and transition region, between the photosphere and corona. This highly structured and dynamic region not only acts as the conduit of all mass and energy feeding into the corona and solar wind, it also requires an order of magnitude more energy to heat than the corona and solar wind combined. The IRIS investigation includes a strong numerical modeling component based on advanced radiative–MHD codes to facilitate interpretation of observations of this complex region. Approximately eight Gbytes of data (after compression) are acquired by IRIS each day and made available for unrestricted use within a few days of the observation.

1,238 citations

Journal ArticleDOI
TL;DR: The Interface Region Imaging Spectrograph (IRIS) as mentioned in this paper is a small explorer spacecraft that provides simultaneous spectra and images of the photosphere, chromosphere, transition region, and corona with 0.33-0.4 arcsec spatial resolution, 2 s temporal resolution and 1 km/s velocity resolution over a field-of-view of up to 175 arcsec.
Abstract: The Interface Region Imaging Spectrograph (IRIS) small explorer spacecraft provides simultaneous spectra and images of the photosphere, chromosphere, transition region, and corona with 0.33-0.4 arcsec spatial resolution, 2 s temporal resolution and 1 km/s velocity resolution over a field-of-view of up to 175 arcsec x 175 arcsec. IRIS was launched into a Sun-synchronous orbit on 27 June 2013 using a Pegasus-XL rocket and consists of a 19-cm UV telescope that feeds a slit-based dual-bandpass imaging spectrograph. IRIS obtains spectra in passbands from 1332-1358, 1389-1407 and 2783-2834 Angstrom including bright spectral lines formed in the chromosphere (Mg II h 2803 Angstrom and Mg II k 2796 Angstrom) and transition region (C II 1334/1335 Angstrom and Si IV 1394/1403 Angstrom). Slit-jaw images in four different passbands (C II 1330, Si IV 1400, Mg II k 2796 and Mg II wing 2830 Angstrom) can be taken simultaneously with spectral rasters that sample regions up to 130 arcsec x 175 arcsec at a variety of spatial samplings (from 0.33 arcsec and up). IRIS is sensitive to emission from plasma at temperatures between 5000 K and 10 MK and will advance our understanding of the flow of mass and energy through an interface region, formed by the chromosphere and transition region, between the photosphere and corona. This highly structured and dynamic region not only acts as the conduit of all mass and energy feeding into the corona and solar wind, it also requires an order of magnitude more energy to heat than the corona and solar wind combined. The IRIS investigation includes a strong numerical modeling component based on advanced radiative-MHD codes to facilitate interpretation of observations of this complex region. Approximately eight Gbytes of data (after compression) are acquired by IRIS each day and made available for unrestricted use within a few days of the observation.

1,034 citations

Journal ArticleDOI
Heike Rauer1, Heike Rauer2, C. Catala3, Conny Aerts4  +164 moreInstitutions (51)
TL;DR: The PLATO 2.0 mission as discussed by the authors has been selected for ESA's M3 launch opportunity (2022/24) to provide accurate key planet parameters (radius, mass, density and age) in statistical numbers.
Abstract: PLATO 2.0 has recently been selected for ESA’s M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s candence) providing a wide field-of-view (2232 deg 2) and a large photometric magnitude range (4–16 mag). It focusses on bright (4–11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4–10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2–3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e.g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmosphere. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA’s Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science.

965 citations