scispace - formally typeset
Search or ask a question
Author

Junxia Wang

Other affiliations: Hefei University of Technology
Bio: Junxia Wang is an academic researcher from South China University of Technology. The author has contributed to research in topics: Nanocarriers & Drug delivery. The author has an hindex of 13, co-authored 21 publications receiving 617 citations. Previous affiliations of Junxia Wang include Hefei University of Technology.

Papers
More filters
Journal ArticleDOI
TL;DR: A thieno-isoindigo derivative-based semiconducting polymer, PBTPBF-BT, formulated into PEGylated nanoparticles exhibited strong absorption in NIR-II region, inherent high photothermal conversion efficacy, and excellent photostability, suggesting the great probability of using NPPBTP BF-BT for in vivo PA imaging-guided PTT in the Nir-II window.

171 citations

Journal ArticleDOI
TL;DR: A reactive oxygen species (ROS)-sensitive polymeric nanocarrier TK-PPE@NPCe6/DOX was explored to realize remotely controlled drug release by light-activated size shrinkage by triggering rapid DOX release.
Abstract: Drug delivery systems with remotely controlled drug release capability are rather attractive options for cancer therapy. Herein, a reactive oxygen species (ROS)-sensitive polymeric nanocarrier TK-PPE@NPCe6/DOX was explored to realize remotely controlled drug release by light-activated size shrinkage. The TK-PPE@NPCe6/DOX encapsulating chlorin e6 (Ce6) and doxorubicin (DOX) was self-assembled from an innovative ROS-sensitive polymer TK-PPE with the assistance of an amphiphilic copolymer poly(ethylene glycol)-b-poly(e-caprolactone) (PEG-b-PCL). Under the 660 nm red light irradiation, ROS generated by the encapsulated Ce6 were capable of cleaving the TK linker in situ, which resulted in the rapid degradation of the TK-PPE@NPCe6/DOX core. Consequently, the size of TK-PPE@NPCe6/DOX shrank from 154 ± 4 nm to 72 ± 3 nm, and such size shrinkage affected further triggered rapid DOX release. As evidenced by both in vitro and in vivo experiments, such ROS-sensitive polymeric nanocarriers with light-induced size shri...

93 citations

Journal ArticleDOI
TL;DR: The use of cascade chemo-photodynamic therapy with reactive oxygen species (ROS)-sensitive lipid-polymer hybrid nanoparticles TKHNP-C/D to potentiate the antitumor efficacy of anti-PD-L1 antibody to generate an abscopal effect which could simultaneously inhibit primary and distant tumor growth.

93 citations

Journal ArticleDOI
TL;DR: Polymeric nanoparticles observed with flowable core can achieve NIR‐activated supersensitive drug release under the assistance of photothermal agent, which significantly enhances its anticancer efficacy, resulting in overcoming of the resistance of cancer cells against DOX treatment in vitro and in vivo.
Abstract: Near infrared (NIR) light-activated supersensitive drug release via photothermal conversion is of particular interest due to its advantages in spatial and temporal control. However, such supersensitive drug release is rarely reported for polymeric nanoparticles. In this study, polymeric nanoparticles observed with flowable core can achieve NIR-activated supersensitive drug release under the assistance of photothermal agent. It is demonstrated that only 5 s NIR irradiation (808 nm, 0.3 W cm−2) leads to 17.8% of doxorubicin (DOX) release, while its release is almost completely stopped when the NIR laser is switched off. In contrast, the control, poly(d,l-lactide) nanoparticles with rigid cores, do not exhibit such supersensitive effect. It is demonstrated that intraparticle temperature is notably increased during photothermal conversion by detecting fluorescein lifetime using a time-correlated single photon counting (TCSPC) technique, which is the main driving force for such supersensitive drug release from hydrophobic flow core. In contrast, rigid chain of nanoparticular core hinders drug diffusion. Furthermore, such NIR light-activated supersensitive drug release is demonstrated, which significantly enhances its anticancer efficacy, resulting in overcoming of the resistance of cancer cells against DOX treatment in vitro and in vivo. This simple and highly universal strategy provides a new approach to fabricate NIR light-activated supersensitive drug delivery systems.

71 citations

Journal ArticleDOI
TL;DR: In vivo and in vitro experiments demonstrated that PBIBDF-BT@NPPPE exhibits efficient photothermal anticancer efficacy and could simultaneously encapsulate other types of therapeutic agents though hydrophobic interactions with the PHEP core and achieve NIR-triggered intracellular drug release and a synergistic combination therapy of thermo-chemotherapy for the treatment of cancer.
Abstract: Conjugated polymers containing alternating donor/acceptor units have strong and sharp absorbance peaks in near-infrared (NIR) region, which could be suitable for photothermal therapy. However, these polymers as photothermal transducers are rarely reported because of their water insolubility, which limits their applications for cancer therapy. Herein, we report the donor–acceptor conjugated polymer PBIBDF-BT with alternating isoindigo derivative (BIBDF) and bithiophene (BT) units as a novel photothermal transducer, which exhibited strong near-infrared (NIR) absorbance due to its low band gap (1.52 eV). To stabilize the conjugated polymer physiological environments, we utilized an amphiphilic copolymer, poly(ethylene glycol)-block-poly(hexyl ethylene phosphate) (mPEG-b-PHEP), to stabilize PBIBDF-BT-based nanoparticles (PBIBDF-BT@NPPPE) through a single emulsion method. The obtained nanoparticles PBIBDF-BT@NPPPE showed great stability in physiological environments and excellent photostability. Moreover, the ...

52 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the intrinsic biochemical properties of reactive oxygen species (ROS) underlie the mechanisms that regulate various physiological functions of living organisms, and they play an essential role in regulating various physiological function.
Abstract: Reactive oxygen species (ROS) play an essential role in regulating various physiological functions of living organisms. The intrinsic biochemical properties of ROS, which underlie the mechanisms ne...

1,260 citations

Journal ArticleDOI
TL;DR: This review summarizes the recent progress in the development of OSMs based on small-molecule fluorophores, aggregation-induced emission (AIE) dyes and semiconducting oligomer/polymer nanoparticles (SONs/SPNs) for advanced biophotonic applications and highlights OSMs as a multifunctional platform for a wide range of biomedical applications.
Abstract: Biophotonics as a highly interdisciplinary frontier often requires the assistance of optical agents to control the light pathways in cells, tissues and living organisms for specific biomedical applications. Organic semiconducting materials (OSMs) composed of π-conjugated building blocks as the optically active components have recently emerged as a promising category of biophotonic agents. OSMs possess common features including excellent optical properties, good photostability and biologically benign composition. This review summarizes the recent progress in the development of OSMs based on small-molecule fluorophores, aggregation-induced emission (AIE) dyes and semiconducting oligomer/polymer nanoparticles (SONs/SPNs) for advanced biophotonic applications. OSMs have been exploited as imaging agents to transduce biomolecular interactions into second near-infrared fluorescence, chemiluminescence, afterglow or photoacoustic signals, enabling deep-tissue ultrasensitive imaging of biological tissues, disease biomarkers and physiological indexes. By fine-tuning the molecular structures, OSMs can also convert light energy into cytotoxic free radicals or heat, allowing for effective cancer phototherapy. Due to their instant light response and efficient light-harvesting properties, precise regulation of biological activities using OSMs as remote transducers has been demonstrated for protein ion channels, gene transcription and protein activation. In addition to highlighting OSMs as a multifunctional platform for a wide range of biomedical applications, current challenges and perspectives of OSMs in biophotonics are discussed.

777 citations

Journal ArticleDOI
TL;DR: This review summarizes the recent advances of NIR-II photothermal combinational theranostics pertinent to chemotherapy, immunotherapy, radiotherapy, and photodynamic, sonodynamic, chemodynamic, gene, gas, ionic, vascular and magnetothermal therapy.
Abstract: Second near-infrared photothermal therapy (NIR-II PTT, 1000-1500 nm) has recently emerged as a new phototherapeutic modality with the advantages of deeper penetration, less energy dissipation and minimal normal-tissue toxicity over traditional first NIR PTT (750-1000 nm). However, suboptimal photothermal conversion and limited therapeutic efficacy remain the major challenges for NIR-II PTT. With the convergence in materials science, nanomedicine and biology, multifunctional NIR-II photothermal inorganic or organic materials have been extensively developed to combine NIR-II PTT with other therapeutic modalities for improved efficacies in treating life-threatening diseases including cancer and infection. This review summarizes the recent advances of NIR-II photothermal combinational theranostics pertinent to chemotherapy, immunotherapy, radiotherapy, and photodynamic, sonodynamic, chemodynamic, gene, gas, ionic, vascular and magnetothermal therapy. Potential obstacles and perspectives for future research and clinical translation of this new theranostic modality are also discussed.

378 citations

Journal ArticleDOI
TL;DR: The recent advances of various NIR-II nano-agents (including single-walled carbon nanotubes, quantum dots, rare-earth doped nanoparticles, other inorganic nanomaterials, small organic molecule-based nanoparticles and semiconducting polymer nanoparticles) in both bioimaging and therapeutic applications are summarized.
Abstract: The optical technology presents non-invasive, non-destructive, and non-ionizing features and has the ability to display various chemical components in tissues to provide useful information for various biomedical applications. Regarding selection of light wavelengths, second near-infrared (NIR-II, 900-1700 nm) light is a much better choice compared to both visible (380-780 nm) and traditional near-infrared (780-900 nm) light, because of its advantages including deeper penetration into biological tissues, less tissue scattering or absorption, and decreased interference by fluorescent proteins. Thus, using optical nano-agents that absorb or emit light in the NIR-II window can achieve deeper tissue optical imaging with higher signal-to-background ratios and better spatial resolution for diagnosis. What's more, some of these nano-agents can be further applied for imaging guided surgical removal, real-time monitoring of drug delivery, labeling lymphatic metastasis, biosensing, and imaging guided phototherapy. In this review, we attempt to summarize the recent advances of various NIR-II nano-agents (including single-walled carbon nanotubes, quantum dots, rare-earth doped nanoparticles, other inorganic nanomaterials, small organic molecule-based nanoparticles, and semiconducting polymer nanoparticles) in both bioimaging and therapeutic applications, and discuss the challenges and perspectives of these nano-agents for clinical practice in the near future.

364 citations

Journal ArticleDOI
TL;DR: This review surveys recent progress made on the design and synthesis of SPNs for molecular imaging and cancer phototherapy and suggests that future efforts should further expand the use ofSPNs in biomedical research and may even move them beyond pre-clinical studies.

364 citations