scispace - formally typeset
Search or ask a question
Author

Junyi Wang

Bio: Junyi Wang is an academic researcher from Beijing Genomics Institute. The author has contributed to research in topics: Genome & Whole genome sequencing. The author has an hindex of 26, co-authored 31 publications receiving 12740 citations. Previous affiliations of Junyi Wang include Chinese Academy of Sciences & Beijing Institute of Genomics.

Papers
More filters
Journal Article•DOI•
Xiaowu Wang1, Hanzhong Wang, Jun Wang2, Jun Wang3, Jun Wang4, Rifei Sun, Jian Wu, Shengyi Liu, Yinqi Bai3, Jeong-Hwan Mun5, Ian Bancroft6, Feng Cheng, Sanwen Huang, Xixiang Li, Wei Hua, Junyi Wang3, Xiyin Wang7, Xiyin Wang8, Michael Freeling9, J. Chris Pires10, Andrew H. Paterson7, Boulos Chalhoub, Bo Wang3, Alice Hayward11, Alice Hayward12, Andrew G. Sharpe13, Beom-Seok Park5, Bernd Weisshaar14, Binghang Liu3, Bo Li3, Bo Liu, Chaobo Tong, Chi Song3, Chris Duran12, Chris Duran15, Chunfang Peng3, Geng Chunyu3, Chushin Koh13, Chuyu Lin3, David Edwards15, David Edwards12, Desheng Mu3, Di Shen, Eleni Soumpourou6, Fei Li, Fiona Fraser6, Gavin C. Conant10, Gilles Lassalle16, Graham J.W. King4, Guusje Bonnema17, Haibao Tang9, Haiping Wang, Harry Belcram, Heling Zhou3, Hideki Hirakawa, Hiroshi Abe, Hui Guo7, Hui Wang, Huizhe Jin7, Isobel A. P. Parkin18, Jacqueline Batley11, Jacqueline Batley12, Jeong-Sun Kim5, Jérémy Just, Jianwen Li3, Jiaohui Xu3, Jie Deng, Jin A Kim5, Jingping Li7, Jingyin Yu, Jinling Meng19, Jinpeng Wang8, Jiumeng Min3, Julie Poulain20, Katsunori Hatakeyama, Kui Wu3, Li Wang8, Lu Fang, Martin Trick6, Matthew G. Links18, Meixia Zhao, Mina Jin5, Nirala Ramchiary21, Nizar Drou22, Paul J. Berkman12, Paul J. Berkman15, Qingle Cai3, Quanfei Huang3, Ruiqiang Li3, Satoshi Tabata, Shifeng Cheng3, Shu Zhang3, Shujiang Zhang, Shunmou Huang, Shusei Sato, Silong Sun, Soo-Jin Kwon5, Su-Ryun Choi21, Tae-Ho Lee7, Wei Fan3, Xiang Zhao3, Xu Tan7, Xun Xu3, Yan Wang, Yang Qiu, Ye Yin3, Yingrui Li3, Yongchen Du, Yongcui Liao, Yong Pyo Lim21, Yoshihiro Narusaka, Yupeng Wang8, Zhenyi Wang8, Zhenyu Li3, Zhiwen Wang3, Zhiyong Xiong10, Zhonghua Zhang •
TL;DR: The annotation and analysis of the draft genome sequence of Brassica rapa accession Chiifu-401-42, a Chinese cabbage, and used Arabidopsis thaliana as an outgroup for investigating the consequences of genome triplication, such as structural and functional evolution.
Abstract: We report the annotation and analysis of the draft genome sequence of Brassica rapa accession Chiifu-401-42, a Chinese cabbage. We modeled 41,174 protein coding genes in the B. rapa genome, which has undergone genome triplication. We used Arabidopsis thaliana as an outgroup for investigating the consequences of genome triplication, such as structural and functional evolution. The extent of gene loss (fractionation) among triplicated genome segments varies, with one of the three copies consistently retaining a disproportionately large fraction of the genes expected to have been present in its ancestor. Variation in the number of members of gene families present in the genome may contribute to the remarkable morphological plasticity of Brassica species. The B. rapa genome sequence provides an important resource for studying the evolution of polyploid genomes and underpins the genetic improvement of Brassica oil and vegetable crops.

1,811 citations

Journal Article•DOI•
04 Oct 2012-Nature
TL;DR: The sequencing and assembly of the oyster genome using short reads and a fosmid-pooling strategy and transcriptomes of development and stress response and the proteome of the shell are reported, showing that shell formation in molluscs is more complex than currently understood and involves extensive participation of cells and their exosomes.
Abstract: The Pacific oyster Crassostrea gigas belongs to one of the most species-rich but genomically poorly explored phyla, the Mollusca. Here we report the sequencing and assembly of the oyster genome using short reads and a fosmid-pooling strategy, along with transcriptomes of development and stress response and the proteome of the shell. The oyster genome is highly polymorphic and rich in repetitive sequences, with some transposable elements still actively shaping variation. Transcriptome studies reveal an extensive set of genes responding to environmental stress. The expansion of genes coding for heat shock protein 70 and inhibitors of apoptosis is probably central to the oyster's adaptation to sessile life in the highly stressful intertidal zone. Our analyses also show that shell formation in molluscs is more complex than currently understood and involves extensive participation of cells and their exosomes. The oyster genome sequence fills a void in our understanding of the Lophotrochozoa.

1,806 citations

Journal Article•DOI•
Ruiqiang Li, Wei Fan, Geng Tian1, Hongmei Zhu, Lin He2, Lin He3, Jing Cai4, Jing Cai1, Quanfei Huang, Qingle Cai5, Bo Li, Yinqi Bai, Zhihe Zhang6, Ya-Ping Zhang4, Wen Wang4, Jun Li, Fuwen Wei1, Heng Li7, Min Jian, Jianwen Li, Zhaolei Zhang8, Rasmus Nielsen9, Dawei Li, Wanjun Gu10, Zhentao Yang, Zhaoling Xuan, Oliver A. Ryder, Frederick C. Leung11, Yan Zhou, Jianjun Cao, Xiao Sun10, Yonggui Fu12, Xiaodong Fang, Xiaosen Guo, Bo Wang, Rong Hou6, Fujun Shen6, Bo Mu, Peixiang Ni, Runmao Lin, Wubin Qian, Guo-Dong Wang4, Guo-Dong Wang1, Chang Yu, Wenhui Nie4, Jinhuan Wang4, Zhigang Wu, Huiqing Liang, Jiumeng Min5, Qi Wu1, Shifeng Cheng5, Jue Ruan1, Mingwei Wang, Zhongbin Shi, Ming Wen, Binghang Liu, Xiaoli Ren, Huisong Zheng, Dong Dong8, Kathleen Cook8, Gao Shan, Hao Zhang, Carolin Kosiol13, Xueying Xie10, Zuhong Lu10, Hancheng Zheng, Yingrui Li1, Cynthia C. Steiner, Tommy Tsan-Yuk Lam11, Siyuan Lin, Qinghui Zhang, Guoqing Li, Jing Tian, Timing Gong, Hongde Liu10, Dejin Zhang10, Lin Fang, Chen Ye, Juanbin Zhang, Wenbo Hu12, Anlong Xu12, Yuanyuan Ren, Guojie Zhang1, Guojie Zhang4, Michael William Bruford14, Qibin Li1, Lijia Ma1, Yiran Guo1, Na An, Yujie Hu1, Yang Zheng1, Yongyong Shi3, Zhiqiang Li3, Qing Liu, Yanling Chen, Jing Zhao, Ning Qu5, Shancen Zhao, Feng Tian, Xiaoling Wang, Haiyin Wang, Lizhi Xu, Xiao Liu, Tomas Vinar15, Yajun Wang16, Tak-Wah Lam11, Siu-Ming Yiu11, Shiping Liu17, Hemin Zhang, Desheng Li, Yan Huang, Xia Wang, Guohua Yang, Zhi Jiang, Junyi Wang, Nan Qin, Li Li, Jingxiang Li, Lars Bolund, Karsten Kristiansen18, Gane Ka-Shu Wong19, Maynard V. Olson20, Xiuqing Zhang, Songgang Li, Huanming Yang, Jing Wang, Jun Wang18 •
21 Jan 2010-Nature
TL;DR: Using next-generation sequencing technology alone, a draft sequence of the giant panda genome is generated and assembled, indicating that its bamboo diet might be more dependent on its gut microbiome than its own genetic composition.
Abstract: Using next-generation sequencing technology alone, we have successfully generated and assembled a draft sequence of the giant panda genome. The assembled contigs (2.25 gigabases (Gb)) cover approximately 94% of the whole genome, and the remaining gaps (0.05 Gb) seem to contain carnivore-specific repeats and tandem repeats. Comparisons with the dog and human showed that the panda genome has a lower divergence rate. The assessment of panda genes potentially underlying some of its unique traits indicated that its bamboo diet might be more dependent on its gut microbiome than its own genetic composition. We also identified more than 2.7 million heterozygous single nucleotide polymorphisms in the diploid genome. Our data and analyses provide a foundation for promoting mammalian genetic research, and demonstrate the feasibility for using next-generation sequencing technologies for accurate, cost-effective and rapid de novo assembly of large eukaryotic genomes.

1,109 citations

Journal Article•DOI•
TL;DR: A draft genome sequence of Brassica oleracea is described, comparing it with that of its sister species B. rapa to reveal numerous chromosome rearrangements and asymmetrical gene loss in duplicated genomic blocks.
Abstract: Polyploidization has provided much genetic variation for plant adaptive evolution, but the mechanisms by which the molecular evolution of polyploid genomes establishes genetic architecture underlying species differentiation are unclear Brassica is an ideal model to increase knowledge of polyploid evolution Here we describe a draft genome sequence of Brassica oleracea, comparing it with that of its sister species B rapa to reveal numerous chromosome rearrangements and asymmetrical gene loss in duplicated genomic blocks, asymmetrical amplification of transposable elements, differential gene co-retention for specific pathways and variation in gene expression, including alternative splicing, among a large number of paralogous and orthologous genes Genes related to the production of anticancer phytochemicals and morphological variations illustrate consequences of genome duplication and gene divergence, imparting biochemical and morphological variation to B oleracea This study provides insights into Brassica genome evolution and will underpin research into the many important crops in this genus

884 citations

Journal Article•DOI•
TL;DR: Cotton, and probably Theobroma cacao, are the only sequenced plant species that possess an authentic CDN1 gene family for gossypol biosynthesis, as revealed by phylogenetic analysis.
Abstract: Yuxian Zhu and colleagues report the draft genome of a diploid cotton Gossypium raimondii. This species is a wild South American cotton, whose progenitor is thought to have been the contributor of the D subgenome of the allotetraploid commercial species Gossypium hirsutum and Gossypium barbadense, which account for ~95% of the worldwide cotton crop.

826 citations


Cited by
More filters
Journal Article•DOI•
TL;DR: The approach to utilizing available RNA-Seq and other data types in the authors' manual curation process for vertebrate, plant, and other species is summarized, and a new direction for prokaryotic genomes and protein name management is described.
Abstract: The RefSeq project at the National Center for Biotechnology Information (NCBI) maintains and curates a publicly available database of annotated genomic, transcript, and protein sequence records (http://www.ncbi.nlm.nih.gov/refseq/). The RefSeq project leverages the data submitted to the International Nucleotide Sequence Database Collaboration (INSDC) against a combination of computation, manual curation, and collaboration to produce a standard set of stable, non-redundant reference sequences. The RefSeq project augments these reference sequences with current knowledge including publications, functional features and informative nomenclature. The database currently represents sequences from more than 55,000 organisms (>4800 viruses, >40,000 prokaryotes and >10,000 eukaryotes; RefSeq release 71), ranging from a single record to complete genomes. This paper summarizes the current status of the viral, prokaryotic, and eukaryotic branches of the RefSeq project, reports on improvements to data access and details efforts to further expand the taxonomic representation of the collection. We also highlight diverse functional curation initiatives that support multiple uses of RefSeq data including taxonomic validation, genome annotation, comparative genomics, and clinical testing. We summarize our approach to utilizing available RNA-Seq and other data types in our manual curation process for vertebrate, plant, and other species, and describe a new direction for prokaryotic genomes and protein name management.

4,104 citations

Journal Article•DOI•
TL;DR: This work proposes a new k-mer counting algorithm and associated implementation, called Jellyfish, which is fast and memory efficient, based on a multithreaded, lock-free hash table optimized for counting k-mers up to 31 bases in length.
Abstract: Motivation: Counting the number of occurrences of every k-mer (substring of length k) in a long string is a central subproblem in many applications, including genome assembly, error correction of sequencing reads, fast multiple sequence alignment and repeat detection. Recently, the deep sequence coverage generated by next-generation sequencing technologies has caused the amount of sequence to be processed during a genome project to grow rapidly, and has rendered current k-mer counting tools too slow and memory intensive. At the same time, large multicore computers have become commonplace in research facilities allowing for a new parallel computational paradigm. Results: We propose a new k-mer counting algorithm and associated implementation, called Jellyfish, which is fast and memory efficient. It is based on a multithreaded, lock-free hash table optimized for counting k-mers up to 31 bases in length. Due to their flexibility, suffix arrays have been the data structure of choice for solving many string problems. For the task of k-mer counting, important in many biological applications, Jellyfish offers a much faster and more memory-efficient solution. Availability: The Jellyfish software is written in C++ and is GPL licensed. It is available for download at http://www.cbcb.umd.edu/software/jellyfish. Contact: [email protected] Supplementary information:Supplementary data are available at Bioinformatics online.

2,779 citations

Journal Article•DOI•
TL;DR: The development of this de novo short read assembly method creates new opportunities for building reference sequences and carrying out accurate analyses of unexplored genomes in a cost-effective way.
Abstract: Next-generation massively parallel DNA sequencing technologies provide ultrahigh throughput at a substantially lower unit data cost; however, the data are very short read length sequences, making de novo assembly extremely challenging. Here, we describe a novel method for de novo assembly of large genomes from short read sequences. We successfully assembled both the Asian and African human genome sequences, achieving an N50 contig size of 7.4 and 5.9 kilobases (kb) and scaffold of 446.3 and 61.9 kb, respectively. The development of this de novo short read assembly method creates new opportunities for building reference sequences and carrying out accurate analyses of unexplored genomes in a cost-effective way.

2,760 citations

Journal Article•DOI•
TL;DR: A new tool, called SSPACE, which is a stand-alone scaffolder of pre-assembled contigs using paired-read data with a short runtime, multiple library input of paired-end and/or mate pair datasets and possible contig extension with unmapped sequence reads.
Abstract: Summary:De novo assembly tools play a main role in reconstructing genomes from next-generation sequencing (NGS) data and usually yield a number of contigs. Using paired-read sequencing data it is possible to assess the order, distance and orientation of contigs and combine them into so-called scaffolds. Although the latter process is a crucial step in finishing genomes, scaffolding algorithms are often built-in functions in de novo assembly tools and cannot be independently controlled. We here present a new tool, called SSPACE, which is a stand-alone scaffolder of pre-assembled contigs using paired-read data. Main features are: a short runtime, multiple library input of paired-end and/or mate pair datasets and possible contig extension with unmapped sequence reads. SSPACE shows promising results on both prokaryote and eukaryote genomic testsets where the amount of initial contigs was reduced by at least 75%. Availability: www.baseclear.com/bioinformatics-tools/. Contact: walter.pirovano@baseclear.com Supplementary information:Supplementary data are available at Bioinformatics online.

2,165 citations