scispace - formally typeset
Search or ask a question
Author

Junying Yuan

Bio: Junying Yuan is an academic researcher from Harvard University. The author has contributed to research in topics: Programmed cell death & Necroptosis. The author has an hindex of 118, co-authored 353 publications receiving 84033 citations. Previous affiliations of Junying Yuan include Boston Children's Hospital & Zhengzhou University.


Papers
More filters
Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations

Journal ArticleDOI
21 Aug 1998-Cell
TL;DR: The results indicate that BID is a mediator of mitochondrial damage induced by Casp8, and coexpression of BclxL inhibits all the apoptotic changes induced by tBID.

4,556 citations

Journal ArticleDOI
Lorenzo Galluzzi1, Lorenzo Galluzzi2, Ilio Vitale3, Stuart A. Aaronson4  +183 moreInstitutions (111)
TL;DR: The Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives.
Abstract: Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.

3,301 citations

Journal ArticleDOI
06 Jan 2000-Nature
TL;DR: It is shown that caspase-12 is localized to the ER and activated by ER stress, including disruption of ER calcium homeostasis and accumulation of excess proteins in ER, but not by membrane- or mitochondrial-targeted apoptotic signals, which may contribute to amyloid-β neurotoxicity.
Abstract: Apoptosis, or cellular suicide, is important for normal development and tissue homeostasis, but too much or too little apoptosis can also cause disease. The family of cysteine proteases, the so- called caspases, are critical mediators of programmed cell death, and thus far 14 family members have been identified. Some of these, such as caspase-8, mediate signal transduction downstream of death receptors located on the plasma membrane. Others, such as caspase-9, mediate apoptotic signals after mitochondrial damage. Stress in the endoplasmic reticulum (ER) can also result in apoptosis. Here we show that caspase-12 is localized to the ER and activated by ER stress, including disruption of ER calcium homeostasis and accumulation of excess proteins in ER, but not by membrane- or mitochondrial-targeted apoptotic signals. Mice that are deficient in caspase-12 are resistant to ER stress-induced apoptosis, but their cells undergo apoptosis in response to other death stimuli. Furthermore, we show that caspase-12-deficient cortical neurons are defective in apoptosis induced by amyloid-beta protein but not by staurosporine or trophic factor deprivation. Thus, caspase-12 mediates an ER-specific apoptosis pathway and may contribute to amyloid-beta neurotoxicity.

3,290 citations

Journal ArticleDOI
TL;DR: This study details the 2009 recommendations of the NCCD on the use of cell death-related terminology including ‘entosis’, ‘mitotic catastrophe”,’ ‘necrosis‚ ‘necroptosis‚’ and ‘pyroptotic’.
Abstract: Different types of cell death are often defined by morphological criteria, without a clear reference to precise biochemical mechanisms. The Nomenclature Committee on Cell Death (NCCD) proposes unified criteria for the definition of cell death and of its different morphologies, while formulating several caveats against the misuse of words and concepts that slow down progress in the area of cell death research. Authors, reviewers and editors of scientific periodicals are invited to abandon expressions like 'percentage apoptosis' and to replace them with more accurate descriptions of the biochemical and cellular parameters that are actually measured. Moreover, at the present stage, it should be accepted that caspase-independent mechanisms can cooperate with (or substitute for) caspases in the execution of lethal signaling pathways and that 'autophagic cell death' is a type of cell death occurring together with (but not necessarily by) autophagic vacuolization. This study details the 2009 recommendations of the NCCD on the use of cell death-related terminology including 'entosis', 'mitotic catastrophe', 'necrosis', 'necroptosis' and 'pyroptosis'.

3,005 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The goal of this review is to provide a general overview of current knowledge on the process of apoptosis including morphology, biochemistry, the role of apoptoses in health and disease, detection methods, as well as a discussion of potential alternative forms of apoptotic proteins.
Abstract: The process of programmed cell death, or apoptosis, is generally characterized by distinct morphological characteristics and energy-dependent biochemical mechanisms. Apoptosis is considered a vital component of various processes including normal cell turnover, proper development and functioning of the immune system, hormone-dependent atrophy, embryonic development and chemical-induced cell death. Inappropriate apoptosis (either too little or too much) is a factor in many human conditions including neurodegenerative diseases, ischemic damage, autoimmune disorders and many types of cancer. The ability to modulate the life or death of a cell is recognized for its immense therapeutic potential. Therefore, research continues to focus on the elucidation and analysis of the cell cycle machinery and signaling pathways that control cell cycle arrest and apoptosis. To that end, the field of apoptosis research has been moving forward at an alarmingly rapid rate. Although many of the key apoptotic proteins have been identified, the molecular mechanisms of action or inaction of these proteins remain to be elucidated. The goal of this review is to provide a general overview of current knowledge on the process of apoptosis including morphology, biochemistry, the role of apoptosis in health and disease, detection methods, as well as a discussion of potential alternative forms of apoptosis.

10,744 citations

Journal ArticleDOI
12 Oct 2000-Nature
TL;DR: The basic components of the death machinery are reviewed, how they interact to regulate apoptosis in a coordinated manner is described, and the main pathways that are used to activate cell death are discussed.
Abstract: Apoptosis - the regulated destruction of a cell - is a complicated process. The decision to die cannot be taken lightly, and the activity of many genes influence a cell's likelihood of activating its self-destruction programme. Once the decision is taken, proper execution of the apoptotic programme requires the coordinated activation and execution of multiple subprogrammes. Here I review the basic components of the death machinery, describe how they interact to regulate apoptosis in a coordinated manner, and discuss the main pathways that are used to activate cell death.

7,255 citations

Journal ArticleDOI
14 Nov 1997-Cell
TL;DR: Mutation of the active site of caspase-9 attenuated the activation of cazase-3 and cellular apoptotic response in vivo, indicating that casp enzyme-9 is the most upstream member of the apoptotic protease cascade that is triggered by cytochrome c and dATP.

7,231 citations

Journal ArticleDOI
25 May 2012-Cell
TL;DR: This paper identified the small molecule ferrostatin-1 as a potent inhibitor of ferroptosis in cancer cells and glutamate-induced cell death in organotypic rat brain slices, suggesting similarities between these two processes.

7,192 citations

Journal ArticleDOI
28 Aug 1998-Science
TL;DR: This work has shown that understanding caspase regulation is intimately linked to the ability to rationally manipulate apoptosis for therapeutic gain.
Abstract: Apoptosis, an evolutionarily conserved form of cell suicide, requires specialized machinery. The central component of this machinery is a proteolytic system involving a family of proteases called caspases. These enzymes participate in a cascade that is triggered in response to proapoptotic signals and culminates in cleavage of a set of proteins, resulting in disassembly of the cell. Understanding caspase regulation is intimately linked to the ability to rationally manipulate apoptosis for therapeutic gain.

6,924 citations