scispace - formally typeset
Search or ask a question
Author

Junze Chen

Bio: Junze Chen is an academic researcher from Nanyang Technological University. The author has contributed to research in topics: Nanosheet & Electrocatalyst. The author has an hindex of 30, co-authored 45 publications receiving 7343 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The unique advances on ultrathin 2D nanomaterials are introduced, followed by the description of their composition and crystal structures, and the assortments of their synthetic methods are summarized.
Abstract: Since the discovery of mechanically exfoliated graphene in 2004, research on ultrathin two-dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter physics, material science, chemistry, and nanotechnology. Highlighting their compelling physical, chemical, electronic, and optical properties, as well as their various potential applications, in this Review, we summarize the state-of-art progress on the ultrathin 2D nanomaterials with a particular emphasis on their recent advances. First, we introduce the unique advances on ultrathin 2D nanomaterials, followed by the description of their composition and crystal structures. The assortments of their synthetic methods are then summarized, including insights on their advantages and limitations, alongside some recommendations on suitable characterization techniques. We also discuss in detail the utilization of these ultrathin 2D nanomaterials for wide ranges of potential applications among the electronics/optoelectronics, electrocat...

3,628 citations

Journal ArticleDOI
TL;DR: It is shown that micrometre-sized metallic 1T′-MoS2- and 1T-MoSe2-layered crystals can be prepared in high phase purity on a large scale, and that they display promising electrocatalytic activity towards the hydrogen evolution reaction.
Abstract: Phase control plays an important role in the precise synthesis of inorganic materials, as the phase structure has a profound influence on properties such as conductivity and chemical stability. Phase-controlled preparation has been challenging for the metallic-phase group-VI transition metal dichalcogenides (the transition metals are Mo and W, and the chalcogens are S, Se and Te), which show better performance in electrocatalysis than their semiconducting counterparts. Here, we report the large-scale preparation of micrometre-sized metallic-phase 1T′-MoX2 (X = S, Se)-layered bulk crystals in high purity. We reveal that 1T′-MoS2 crystals feature a distorted octahedral coordination structure and are convertible to 2H-MoS2 following thermal annealing or laser irradiation. Electrochemical measurements show that the basal plane of 1T′-MoS2 is much more active than that of 2H-MoS2 for the electrocatalytic hydrogen evolution reaction in an acidic medium.

657 citations

Journal ArticleDOI
TL;DR: A facile one-pot wet-chemical method is developed to prepare MS2-CdS (M=W or Mo) nanohybrids, which possess a large number of edge sites in the MS2 layers, which are active sites for the HER.
Abstract: Exploration of low-cost and earth-abundant photocatalysts for highly efficient solar photocatalytic water splitting is of great importance. Although transition-metal dichalcogenides (TMDs) showed outstanding performance as co-catalysts for the hydrogen evolution reaction (HER), designing TMD-hybridized photocatalysts with abundant active sites for the HER still remains challenge. Here, a facile one-pot wet-chemical method is developed to prepare MS2–CdS (M=W or Mo) nanohybrids. Surprisedly, in the obtained nanohybrids, single-layer MS2 nanosheets with lateral size of 4–10 nm selectively grow on the Cd-rich (0001) surface of wurtzite CdS nanocrystals. These MS2–CdS nanohybrids possess a large number of edge sites in the MS2 layers, which are active sites for the HER. The photocatalytic performances of WS2–CdS and MoS2–CdS nanohybrids towards the HER under visible light irradiation (>420 nm) are about 16 and 12 times that of pure CdS, respectively. Importantly, the MS2–CdS nanohybrids showed enhanced stability after a long-time test (16 h), and 70 % of catalytic activity still remained.

624 citations

Journal ArticleDOI
TL;DR: Novel ultrathin 2D bimetallic metal-organic-framework nanosheets are successfully synthesized, which can serve as advanced 2D biomimetic nanomaterials to mimic heme proteins.
Abstract: With the bioinspired design of organic ligands and metallic nodes, novel ultrathin 2D bimetallic metal-organic-framework nanosheets are successfully synthesized, which can serve as advanced 2D biomimetic nanomaterials to mimic heme proteins.

389 citations

Journal ArticleDOI
TL;DR: This study paves a new avenue to design nanomaterial-based biomimetic catalysts with multiple complex functions, and uses the synthesized hybrid nanosheets to detect biomolecules, such as glucose.
Abstract: Inspired by the multiple functions of natural multienzyme systems, a new kind of hybrid nanosheet is designed and synthesized, i.e., ultrasmall Au nanoparticles (NPs) grown on 2D metalloporphyrinic metal-organic framework (MOF) nanosheets. Since 2D metalloporphyrinic MOF nanosheets can act as the peroxidase mimics and Au NPs can serve as artificial glucose oxidase, the hybrid nanosheets are used to mimic the natural enzymes and catalyze the cascade reactions. Furthermore, the synthesized hybrid nanosheets are used to detect biomolecules, such as glucose. This study paves a new avenue to design nanomaterial-based biomimetic catalysts with multiple complex functions.

340 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is anticipated that this review can stimulate a new research doorway to facilitate the next generation of g-C3N4-based photocatalysts with ameliorated performances by harnessing the outstanding structural, electronic, and optical properties for the development of a sustainable future without environmental detriment.
Abstract: As a fascinating conjugated polymer, graphitic carbon nitride (g-C3N4) has become a new research hotspot and drawn broad interdisciplinary attention as a metal-free and visible-light-responsive photocatalyst in the arena of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability, and “earth-abundant” nature. This critical review summarizes a panorama of the latest progress related to the design and construction of pristine g-C3N4 and g-C3N4-based nanocomposites, including (1) nanoarchitecture design of bare g-C3N4, such as hard and soft templating approaches, supramolecular preorganization assembly, exfoliation, and template-free synthesis routes, (2) functionalization of g-C3N4 at an atomic level (elemental doping) and molecular level (copolymerization), and (3) modification of g-C3N4 with well-matched energy levels of another semiconductor or a metal as a cocatalyst to form heterojunction nanostructures. The constructi...

5,054 citations

Journal ArticleDOI
TL;DR: The unique advances on ultrathin 2D nanomaterials are introduced, followed by the description of their composition and crystal structures, and the assortments of their synthetic methods are summarized.
Abstract: Since the discovery of mechanically exfoliated graphene in 2004, research on ultrathin two-dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter physics, material science, chemistry, and nanotechnology. Highlighting their compelling physical, chemical, electronic, and optical properties, as well as their various potential applications, in this Review, we summarize the state-of-art progress on the ultrathin 2D nanomaterials with a particular emphasis on their recent advances. First, we introduce the unique advances on ultrathin 2D nanomaterials, followed by the description of their composition and crystal structures. The assortments of their synthetic methods are then summarized, including insights on their advantages and limitations, alongside some recommendations on suitable characterization techniques. We also discuss in detail the utilization of these ultrathin 2D nanomaterials for wide ranges of potential applications among the electronics/optoelectronics, electrocat...

3,628 citations

Journal ArticleDOI
TL;DR: It is believed that PTT and PAI having noteworthy features would become promising next-generation non-invasive cancer theranostic techniques and improve the ability to combat cancers.
Abstract: The nonradiative conversion of light energy into heat (photothermal therapy, PTT) or sound energy (photoacoustic imaging, PAI) has been intensively investigated for the treatment and diagnosis of cancer, respectively. By taking advantage of nanocarriers, both imaging and therapeutic functions together with enhanced tumour accumulation have been thoroughly studied to improve the pre-clinical efficiency of PAI and PTT. In this review, we first summarize the development of inorganic and organic nano photothermal transduction agents (PTAs) and strategies for improving the PTT outcomes, including applying appropriate laser dosage, guiding the treatment via imaging techniques, developing PTAs with absorption in the second NIR window, increasing photothermal conversion efficiency (PCE), and also increasing the accumulation of PTAs in tumours. Second, we introduce the advantages of combining PTT with other therapies in cancer treatment. Third, the emerging applications of PAI in cancer-related research are exemplified. Finally, the perspectives and challenges of PTT and PAI for combating cancer, especially regarding their clinical translation, are discussed. We believe that PTT and PAI having noteworthy features would become promising next-generation non-invasive cancer theranostic techniques and improve our ability to combat cancers.

1,721 citations

Journal ArticleDOI
25 Sep 2015-ACS Nano
TL;DR: The state of the art in the development of ultrathin 2D nanomaterials is reviewed and their unique advantages are highlighted, together with some personal insights on the challenges in this research area.
Abstract: The past decade has witnessed an extraordinary increase in research progress on ultrathin two-dimensional (2D) nanomaterials in the fields of condensed matter physics, materials science, and chemistry after the exfoliation of graphene from graphite in 2004. This unique class of nanomaterials has shown many unprecedented properties and thus is being explored for numerous promising applications. In this Perspective, I briefly review the state of the art in the development of ultrathin 2D nanomaterials and highlight their unique advantages. Then, I discuss the typical synthetic methods and some promising applications of ultrathin 2D nanomaterials together with some personal insights on the challenges in this research area. Finally, on the basis of the current achievement on ultrathin 2D nanomaterials, I give some personal perspectives on potential future research directions.

1,582 citations

Journal ArticleDOI
TL;DR: This review systematically introduces the classification, catalytic mechanism, activity regulation as well as recent research progress of nanozymes in the field of biosensing, environmental protection, and disease treatments, etc. in the past years.
Abstract: Because of the high catalytic activities and substrate specificity, natural enzymes have been widely used in industrial, medical, and biological fields, etc. Although promising, they often suffer from intrinsic shortcomings such as high cost, low operational stability, and difficulties of recycling. To overcome these shortcomings, researchers have been devoted to the exploration of artificial enzyme mimics for a long time. Since the discovery of ferromagnetic nanoparticles with intrinsic horseradish peroxidase-like activity in 2007, a large amount of studies on nanozymes have been constantly emerging in the next decade. Nanozymes are one kind of nanomaterials with enzymatic catalytic properties. Compared with natural enzymes, nanozymes have the advantages such as low cost, high stability and durability, which have been widely used in industrial, medical, and biological fields. A thorough understanding of the possible catalytic mechanisms will contribute to the development of novel and high-efficient nanozymes, and the rational regulations of the activities of nanozymes are of great significance. In this review, we systematically introduce the classification, catalytic mechanism, activity regulation as well as recent research progress of nanozymes in the field of biosensing, environmental protection, and disease treatments, etc. in the past years. We also propose the current challenges of nanozymes as well as their future research focus. We anticipate this review may be of significance for the field to understand the properties of nanozymes and the development of novel nanomaterials with enzyme mimicking activities.

1,549 citations