scispace - formally typeset
Search or ask a question
Author

Juraj Bartolic

Bio: Juraj Bartolic is an academic researcher from University of Zagreb. The author has contributed to research in topics: Microstrip antenna & Antenna (radio). The author has an hindex of 14, co-authored 116 publications receiving 1044 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a rectangular waveguide filled with anisotropic uniaxial metamaterial with transversal negative effective permeability was investigated both theoretically and experimentally, and it was shown that such a waveguide supports propagation of the backward wave below the cutoff frequency, thus it can be considered as a dual of the ordinary waveguide.
Abstract: A rectangular waveguide filled with anisotropic uniaxial metamaterial with transversal negative effective permeability is investigated both theoretically and experimentally. It is shown that such a waveguide supports propagation of the backward wave below the cutoff frequency, thus, it can be considered as a dual of the ordinary waveguide. The transversal dimension of this waveguide can be arbitrarily smaller than half of a wavelength in the filling material, provided that the transversal permeability is negative. This peculiar behavior may be used for fabrication of miniaturized rectangular waveguides. Several experimental miniaturized waveguides loaded with double ring resonators in 7 GHz frequency band have been designed, fabricated and tested. The measured results revealed backward-wave passband located below the cutoff frequency. Furthermore, it was experimentally shown that the increase of the physical length of the waveguide caused the decrease of the electrical length. This is a direct proof of the backward-wave propagation since the phase of the backward wave increases along the waveguide.

288 citations

Journal ArticleDOI
TL;DR: In this article, the application of stacked shorted patches as array elements for a mobile communication base station as well as for an electromagnetic field sensor is presented, and the design of single and dual band folded monopoles is described.
Abstract: The paper presents research results in the field of small antennas obtained at the Department of Wireless Communications, Faculty of Electrical Engineering and Computing, University of Zagreb. A study comparing the application of several miniaturization techniques on a shorted patch antenna is presented. Single and dual band shorted patch antennas with notches and/or slot are introduced. A PIFA designed for application in mobile GSM terminals is described. The application of stacked shorted patches as array elements for a mobile communication base station as well as for electromagnetic field sensor is presented. The design of single and dual band folded monopoles is described. Prototypes of the presented antennas have been manufactured and their characteristics were verified b y measurements.

86 citations

Journal ArticleDOI
TL;DR: A metallic button is proposed as the transition between textile antennas and classical circuits for planar inverted-F antennas made of woven conductive textiles and of patterns embroidered with conductive threads.
Abstract: Planar inverted-F antennas (PIFAs) made of woven conductive textiles and of patterns embroidered with conductive threads are investigated. The influence of conductive thread density on antenna properties is considered in both cases. The effect of lockstitch on antenna resonant frequency is quantified. A metallic button is proposed as the transition between textile antennas and classical circuits. A full-textile prototype of a PIFA is designed and shown to operate properly in the ISM 2.4 band.

81 citations

Journal ArticleDOI
TL;DR: The complete antenna system performance is rigorously evaluated based on full-wave simulations and the unit cell measurements, demonstrating an 18° and 23° variation of the half-power beamwidth in the E-plane and the H-plane, respectively.
Abstract: A partially reflective surface (PRS) antenna design enabling 1-bit dynamic beamwidth control is presented. The antenna operates at X-band and is based on microelectromechanical systems (MEMS) technology. The reconfigurable PRS unit cell monolithically integrates MEMS elements, whose positions are chosen to reduce losses while allowing a considerable beamwidth variation. The combined use of the proposed PRS unit cell topology and MEMS technology allows achieving low loss in the reconfigurable PRS. In addition, the antenna operates in dual-linear polarization with independent beamwidth control of each polarization. An operative MEMS-based PRS unit cell is fabricated and measured upon reconfiguration, showing very good agreement with simulations. The complete antenna system performance is rigorously evaluated based on full-wave simulations and the unit cell measurements, demonstrating an 18° and 23° variation of the half-power beamwidth in the E-plane and the H-plane, respectively. The antenna radiation efficiency is better than 75% in all states of operation.

55 citations

Journal ArticleDOI
TL;DR: In this paper, the dynamic control of the beamwidth of a partially reflective surface (PRS) antenna is reported for the first time, and a design methodology is proposed by revisiting the PRS antenna theory from the perspective of its reconfigurable beamwidth operation.
Abstract: The dynamic control of the beamwidth of a partially reflective surface (PRS) antenna is reported for the first time. First, a design methodology is proposed by revisiting the PRS antenna theory from the perspective of its reconfigurable beamwidth operation, which is achieved by the control of the reflection magnitude of the PRS. The proposed PRS design only requires one varactor diode per PRS unit cell and a common control voltage for the entire structure. Finally, a fully operational reconfigurable antenna has been fabricated and measured, successfully demonstrating the targeted capability.

47 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the basic physics and applications of planar metamaterials, often called metasurfaces, which are composed of optically thin and densely packed planar arrays of resonant or nearly resonant subwavelength elements, are reviewed.

1,047 citations

Journal ArticleDOI
TL;DR: The paper describes the fundamental design approaches employed in realizing reconfigurable designs, and explores advanced capabilities of these nascent architectures, such as multi-band operation, polarization manipulation, frequency agility, and amplification.
Abstract: Advances in reflectarrays and array lenses with electronic beam-forming capabilities are enabling a host of new possibilities for these high-performance, low-cost antenna architectures. This paper reviews enabling technologies and topologies of reconfigurable reflectarray and array lens designs, and surveys a range of experimental implementations and achievements that have been made in this area in recent years. The paper describes the fundamental design approaches employed in realizing reconfigurable designs, and explores advanced capabilities of these nascent architectures, such as multi-band operation, polarization manipulation, frequency agility, and amplification. Finally, the paper concludes by discussing future challenges and possibilities for these antennas.

586 citations

01 Nov 1984
TL;DR: In this article, a substrate-superstrate printed antenna geometry which allows for large antenna gain is presented, asymptotic formulas for gain, beamwidth, and bandwidth are given, and the bandwidth limitation of the method is discussed.
Abstract: Resonance conditions for a substrate-superstrate printed antenna geometry which allow for large antenna gain are presented. Asymptotic formulas for gain, beamwidth, and bandwidth are given, and the bandwidth limitation of the method is discussed. The method is extended to produce narrow patterns about the horizon, and directive patterns at two different angles.

568 citations

Journal ArticleDOI
TL;DR: In this article, the authors analyzed the transverse-magnetic (TM) wave interaction with a pair of slabs, one being an epsilon negative (ENG) layer in which the real part of permittivity is assumed to be negative while its permeability has positive real part, and the other being a mu-negative (MNG) layer that has the real parts of its permittability negative but its permitivity has positivereal part.
Abstract: Here, we analyze the transverse-magnetic (TM) wave interaction with a pair of slabs, one being an epsilon-negative (ENG) layer in which the real part of permittivity is assumed to be negative while its permeability has positive real part, and the other being a mu-negative (MNG) layer that has the real part of its permeability negative but its permittivity has positive real part. Although the wave interaction with each slab by itself has predictable features, we show that the juxtaposition and pairing of such ENG and MNG slabs may, under certain conditions, lead to some unusual features, such as resonance, complete tunneling, zero reflection and transparency. The field distributions inside and outside such paired slabs are analyzed, and the Poynting vector distributions in such structures are studied. Using equivalent transmission-line models, we obtain the conditions for the resonance, complete tunneling and transparency, and we justify and explain the field behavior in these resonant paired structures. Salient features of the tunneling conditions, such as the roles of material parameters, slab thicknesses, dissipation, and angle of incidence are discussed. The analogy and correspondence between the ENG-MNG pair and the pair of a slab of conventional material juxtaposed with a "double-negative" medium is also discussed. Finally, a conceptual idea for a potential application of such a "matched" lossless ENG-MNG pair in "ideal" image displacement and image reconstruction is proposed.

555 citations

Posted Content
TL;DR: In this article, the authors present a review of the technologies and topologies of reconfigurable reflectarray and array lens designs, and surveys a range of experimental implementations and achievements that have been made in this area in recent years.
Abstract: Advances in reflectarrays and array lenses with electronic beam-forming capabilities are enabling a host of new possibilities for these high-performance, low-cost antenna architectures. This paper reviews enabling technologies and topologies of reconfigurable reflectarray and array lens designs, and surveys a range of experimental implementations and achievements that have been made in this area in recent years. The paper describes the fundamental design approaches employed in realizing reconfigurable designs, and explores advanced capabilities of these nascent architectures, such as multi-band operation, polarization manipulation, frequency agility, and amplification. Finally, the paper concludes by discussing future challenges and possibilities for these antennas.

495 citations