scispace - formally typeset
Search or ask a question
Author

Jure Leskovec

Bio: Jure Leskovec is an academic researcher from Stanford University. The author has contributed to research in topics: Computer science & Graph (abstract data type). The author has an hindex of 127, co-authored 473 publications receiving 89014 citations. Previous affiliations of Jure Leskovec include Google & Jožef Stefan Institute.


Papers
More filters
Posted Content
TL;DR: GraphSAGE is presented, a general, inductive framework that leverages node feature information (e.g., text attributes) to efficiently generate node embeddings for previously unseen data and outperforms strong baselines on three inductive node-classification benchmarks.
Abstract: Low-dimensional embeddings of nodes in large graphs have proved extremely useful in a variety of prediction tasks, from content recommendation to identifying protein functions. However, most existing approaches require that all nodes in the graph are present during training of the embeddings; these previous approaches are inherently transductive and do not naturally generalize to unseen nodes. Here we present GraphSAGE, a general, inductive framework that leverages node feature information (e.g., text attributes) to efficiently generate node embeddings for previously unseen data. Instead of training individual embeddings for each node, we learn a function that generates embeddings by sampling and aggregating features from a node's local neighborhood. Our algorithm outperforms strong baselines on three inductive node-classification benchmarks: we classify the category of unseen nodes in evolving information graphs based on citation and Reddit post data, and we show that our algorithm generalizes to completely unseen graphs using a multi-graph dataset of protein-protein interactions.

7,926 citations

Proceedings ArticleDOI
13 Aug 2016
TL;DR: Node2vec as mentioned in this paper learns a mapping of nodes to a low-dimensional space of features that maximizes the likelihood of preserving network neighborhoods of nodes by using a biased random walk procedure.
Abstract: Prediction tasks over nodes and edges in networks require careful effort in engineering features used by learning algorithms. Recent research in the broader field of representation learning has led to significant progress in automating prediction by learning the features themselves. However, present feature learning approaches are not expressive enough to capture the diversity of connectivity patterns observed in networks. Here we propose node2vec, an algorithmic framework for learning continuous feature representations for nodes in networks. In node2vec, we learn a mapping of nodes to a low-dimensional space of features that maximizes the likelihood of preserving network neighborhoods of nodes. We define a flexible notion of a node's network neighborhood and design a biased random walk procedure, which efficiently explores diverse neighborhoods. Our algorithm generalizes prior work which is based on rigid notions of network neighborhoods, and we argue that the added flexibility in exploring neighborhoods is the key to learning richer representations. We demonstrate the efficacy of node2vec over existing state-of-the-art techniques on multi-label classification and link prediction in several real-world networks from diverse domains. Taken together, our work represents a new way for efficiently learning state-of-the-art task-independent representations in complex networks.

7,072 citations

01 Jun 2014
TL;DR: A collection of more than 50 large network datasets from tens of thousands of node and edges to tens of millions of nodes and edges that includes social networks, web graphs, road networks, internet networks, citation networks, collaboration networks, and communication networks.
Abstract: A collection of more than 50 large network datasets from tens of thousands of nodes and edges to tens of millions of nodes and edges. In includes social networks, web graphs, road networks, internet networks, citation networks, collaboration networks, and communication networks.

3,135 citations

Proceedings ArticleDOI
21 Aug 2011
TL;DR: A model of human mobility that combines periodic short range movements with travel due to the social network structure is developed and it is shown that this model reliably predicts the locations and dynamics of future human movement and gives an order of magnitude better performance.
Abstract: Even though human movement and mobility patterns have a high degree of freedom and variation, they also exhibit structural patterns due to geographic and social constraints. Using cell phone location data, as well as data from two online location-based social networks, we aim to understand what basic laws govern human motion and dynamics. We find that humans experience a combination of periodic movement that is geographically limited and seemingly random jumps correlated with their social networks. Short-ranged travel is periodic both spatially and temporally and not effected by the social network structure, while long-distance travel is more influenced by social network ties. We show that social relationships can explain about 10% to 30% of all human movement, while periodic behavior explains 50% to 70%. Based on our findings, we develop a model of human mobility that combines periodic short range movements with travel due to the social network structure. We show that our model reliably predicts the locations and dynamics of future human movement and gives an order of magnitude better performance than present models of human mobility.

2,922 citations

Proceedings ArticleDOI
19 Jul 2018
TL;DR: A novel method based on highly efficient random walks to structure the convolutions and a novel training strategy that relies on harder-and-harder training examples to improve robustness and convergence of the model are developed.
Abstract: Recent advancements in deep neural networks for graph-structured data have led to state-of-the-art performance on recommender system benchmarks. However, making these methods practical and scalable to web-scale recommendation tasks with billions of items and hundreds of millions of users remains an unsolved challenge. Here we describe a large-scale deep recommendation engine that we developed and deployed at Pinterest. We develop a data-efficient Graph Convolutional Network (GCN) algorithm, which combines efficient random walks and graph convolutions to generate embeddings of nodes (i.e., items) that incorporate both graph structure as well as node feature information. Compared to prior GCN approaches, we develop a novel method based on highly efficient random walks to structure the convolutions and design a novel training strategy that relies on harder-and-harder training examples to improve robustness and convergence of the model. We also develop an efficient MapReduce model inference algorithm to generate embeddings using a trained model. Overall, we can train on and embed graphs that are four orders of magnitude larger than typical GCN implementations. We show how GCN embeddings can be used to make high-quality recommendations in various settings at Pinterest, which has a massive underlying graph with 3 billion nodes representing pins and boards, and 17 billion edges. According to offline metrics, user studies, as well as A/B tests, our approach generates higher-quality recommendations than comparable deep learning based systems. To our knowledge, this is by far the largest application of deep graph embeddings to date and paves the way for a new generation of web-scale recommender systems based on graph convolutional architectures.

2,647 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Posted Content
TL;DR: A scalable approach for semi-supervised learning on graph-structured data that is based on an efficient variant of convolutional neural networks which operate directly on graphs which outperforms related methods by a significant margin.
Abstract: We present a scalable approach for semi-supervised learning on graph-structured data that is based on an efficient variant of convolutional neural networks which operate directly on graphs. We motivate the choice of our convolutional architecture via a localized first-order approximation of spectral graph convolutions. Our model scales linearly in the number of graph edges and learns hidden layer representations that encode both local graph structure and features of nodes. In a number of experiments on citation networks and on a knowledge graph dataset we demonstrate that our approach outperforms related methods by a significant margin.

15,696 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations