scispace - formally typeset
Search or ask a question
Author

Jure Zbontar

Other affiliations: University of Ljubljana
Bio: Jure Zbontar is an academic researcher from Facebook. The author has contributed to research in topics: Autoencoder & Rank (linear algebra). The author has an hindex of 10, co-authored 19 publications receiving 1361 citations. Previous affiliations of Jure Zbontar include University of Ljubljana.

Papers
More filters
Proceedings ArticleDOI
07 Jun 2015
TL;DR: This work trains a convolutional neural network to predict how well two image patches match and uses it to compute the stereo matching cost, which achieves an error rate of 2.61% on the KITTI stereo dataset.
Abstract: We present a method for extracting depth information from a rectified image pair. We train a convolutional neural network to predict how well two image patches match and use it to compute the stereo matching cost. The cost is refined by cross-based cost aggregation and semiglobal matching, followed by a left-right consistency check to eliminate errors in the occluded regions. Our stereo method achieves an error rate of 2.61% on the KITTI stereo dataset and is currently (August 2014) the top performing method on this dataset.

762 citations

Posted Content
TL;DR: The fastMRI dataset is introduced, a large-scale collection of both raw MR measurements and clinical MR images that can be used for training and evaluation of machine-learning approaches to MR image reconstruction.
Abstract: Accelerating Magnetic Resonance Imaging (MRI) by taking fewer measurements has the potential to reduce medical costs, minimize stress to patients and make MRI possible in applications where it is currently prohibitively slow or expensive. We introduce the fastMRI dataset, a large-scale collection of both raw MR measurements and clinical MR images, that can be used for training and evaluation of machine-learning approaches to MR image reconstruction. By introducing standardized evaluation criteria and a freely-accessible dataset, our goal is to help the community make rapid advances in the state of the art for MR image reconstruction. We also provide a self-contained introduction to MRI for machine learning researchers with no medical imaging background.

480 citations

Journal ArticleDOI
29 Jan 2020
TL;DR: A publicly available dataset containing k-space data as well as Digital Imaging and Communications in Medicine image data of knee images for accelerated MR image reconstruction using machine learning is presented.
Abstract: A publicly available dataset containing k-space data as well as Digital Imaging and Communications in Medicine image data of knee images for accelerated MR image reconstruction using machine learning is presented.

211 citations

Book ChapterDOI
04 Oct 2020
TL;DR: This paper presents a new approach to this problem that extends previously proposed variational methods by learning fully end-to-end and obtains new state-of-the-art results on the fastMRI dataset for both brain and knee MRIs.
Abstract: The slow acquisition speed of magnetic resonance imaging (MRI) has led to the development of two complementary methods: acquiring multiple views of the anatomy simultaneously (parallel imaging) and acquiring fewer samples than necessary for traditional signal processing methods (compressed sensing). While the combination of these methods has the potential to allow much faster scan times, reconstruction from such undersampled multi-coil data has remained an open problem. In this paper, we present a new approach to this problem that extends previously proposed variational methods by learning fully end-to-end. Our method obtains new state-of-the-art results on the fastMRI dataset [16] for both brain and knee MRIs.

121 citations

Journal ArticleDOI
TL;DR: To advance research in the field of machine learning for MR image reconstruction with an open challenge.
Abstract: Purpose: To advance research in the field of machine learning for MR image reconstruction with an open challenge. Methods: We provided participants with a dataset of raw k-space data from 1,594 consecutive clinical exams of the knee. The goal of the challenge was to reconstruct images from these data. In order to strike a balance between realistic data and a shallow learning curve for those not already familiar with MR image reconstruction, we ran multiple tracks for multi-coil and single-coil data. We performed a two-stage evaluation based on quantitative image metrics followed by evaluation by a panel of radiologists. The challenge ran from June to December of 2019. Results: We received a total of 33 challenge submissions. All participants chose to submit results from supervised machine learning approaches. Conclusion: The challenge led to new developments in machine learning for image reconstruction, provided insight into the current state of the art in the field, and highlighted remaining hurdles for clinical adoption.

111 citations


Cited by
More filters
Proceedings ArticleDOI
07 Dec 2015
TL;DR: In this paper, the authors propose and compare two architectures: a generic architecture and another one including a layer that correlates feature vectors at different image locations, and show that networks trained on this unrealistic data still generalize very well to existing datasets such as Sintel and KITTI.
Abstract: Convolutional neural networks (CNNs) have recently been very successful in a variety of computer vision tasks, especially on those linked to recognition. Optical flow estimation has not been among the tasks CNNs succeeded at. In this paper we construct CNNs which are capable of solving the optical flow estimation problem as a supervised learning task. We propose and compare two architectures: a generic architecture and another one including a layer that correlates feature vectors at different image locations. Since existing ground truth data sets are not sufficiently large to train a CNN, we generate a large synthetic Flying Chairs dataset. We show that networks trained on this unrealistic data still generalize very well to existing datasets such as Sintel and KITTI, achieving competitive accuracy at frame rates of 5 to 10 fps.

3,833 citations

Journal ArticleDOI
TL;DR: The challenges of using deep learning for remote-sensing data analysis are analyzed, recent advances are reviewed, and resources are provided that hope will make deep learning in remote sensing seem ridiculously simple.
Abstract: Central to the looming paradigm shift toward data-intensive science, machine-learning techniques are becoming increasingly important. In particular, deep learning has proven to be both a major breakthrough and an extremely powerful tool in many fields. Shall we embrace deep learning as the key to everything? Or should we resist a black-box solution? These are controversial issues within the remote-sensing community. In this article, we analyze the challenges of using deep learning for remote-sensing data analysis, review recent advances, and provide resources we hope will make deep learning in remote sensing seem ridiculously simple. More importantly, we encourage remote-sensing scientists to bring their expertise into deep learning and use it as an implicit general model to tackle unprecedented, large-scale, influential challenges, such as climate change and urbanization.

2,095 citations

Proceedings ArticleDOI
07 Dec 2015
TL;DR: This paper addresses three different computer vision tasks using a single basic architecture: depth prediction, surface normal estimation, and semantic labeling using a multiscale convolutional network that is able to adapt easily to each task using only small modifications.
Abstract: In this paper we address three different computer vision tasks using a single basic architecture: depth prediction, surface normal estimation, and semantic labeling. We use a multiscale convolutional network that is able to adapt easily to each task using only small modifications, regressing from the input image to the output map directly. Our method progressively refines predictions using a sequence of scales, and captures many image details without any superpixels or low-level segmentation. We achieve state-of-the-art performance on benchmarks for all three tasks.

2,046 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: This paper shows how to learn directly from image data a general similarity function for comparing image patches, which is a task of fundamental importance for many computer vision problems, and opts for a CNN-based model that is trained to account for a wide variety of changes in image appearance.
Abstract: In this paper we show how to learn directly from image data (i.e., without resorting to manually-designed features) a general similarity function for comparing image patches, which is a task of fundamental importance for many computer vision problems. To encode such a function, we opt for a CNN-based model that is trained to account for a wide variety of changes in image appearance. To that end, we explore and study multiple neural network architectures, which are specifically adapted to this task. We show that such an approach can significantly outperform the state-of-the-art on several problems and benchmark datasets.

1,364 citations

Book ChapterDOI
08 Oct 2016
TL;DR: This work proposes a unsupervised framework to learn a deep convolutional neural network for single view depth prediction, without requiring a pre-training stage or annotated ground-truth depths, and shows that this network trained on less than half of the KITTI dataset gives comparable performance to that of the state-of-the-art supervised methods for singleView depth estimation.
Abstract: A significant weakness of most current deep Convolutional Neural Networks is the need to train them using vast amounts of manually labelled data. In this work we propose a unsupervised framework to learn a deep convolutional neural network for single view depth prediction, without requiring a pre-training stage or annotated ground-truth depths. We achieve this by training the network in a manner analogous to an autoencoder. At training time we consider a pair of images, source and target, with small, known camera motion between the two such as a stereo pair. We train the convolutional encoder for the task of predicting the depth map for the source image. To do so, we explicitly generate an inverse warp of the target image using the predicted depth and known inter-view displacement, to reconstruct the source image; the photometric error in the reconstruction is the reconstruction loss for the encoder. The acquisition of this training data is considerably simpler than for equivalent systems, requiring no manual annotation, nor calibration of depth sensor to camera. We show that our network trained on less than half of the KITTI dataset gives comparable performance to that of the state-of-the-art supervised methods for single view depth estimation.

1,238 citations