scispace - formally typeset
Search or ask a question
Author

Jürg Hutter

Other affiliations: Nvidia, Pacific Northwest National Laboratory, ETH Zurich  ...read more
Bio: Jürg Hutter is an academic researcher from University of Zurich. The author has contributed to research in topics: Density functional theory & Gaussian. The author has an hindex of 58, co-authored 180 publications receiving 27863 citations. Previous affiliations of Jürg Hutter include Nvidia & Pacific Northwest National Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: The pseudopotential is of an analytic form that gives optimal efficiency in numerical calculations using plane waves as a basis set and is separable and has optimal decay properties in both real and Fourier space.
Abstract: We present pseudopotential coefficients for the first two rows of the Periodic Table. The pseudopotential is of an analytic form that gives optimal efficiency in numerical calculations using plane waves as a basis set. At most, seven coefficients are necessary to specify its analytic form. It is separable and has optimal decay properties in both real and Fourier space. Because of this property, the application of the nonlocal part of the pseudopotential to a wave function can be done efficiently on a grid in real space. Real space integration is much faster for large systems than ordinary multiplication in Fourier space, since it shows only quadratic scaling with respect to the size of the system. We systematically verify the high accuracy of these pseudopotentials by extensive atomic and molecular test calculations. \textcopyright{} 1996 The American Physical Society.

5,009 citations

Journal ArticleDOI
TL;DR: It is shown how derivatives of the GPW energy functional, namely ionic forces and the Kohn–Sham matrix, can be computed in a consistent way and the computational cost is scaling linearly with the system size, even for condensed phase systems of just a few tens of atoms.

4,047 citations

Journal ArticleDOI
TL;DR: The relativistic dual-space Gaussian pseudopotential was introduced in this paper for the whole Periodic Table and a complete table of pseudopoetic parameters for all the elements from H to Rn.
Abstract: We generalize the concept of separable dual-space Gaussian pseudopotentials to the relativistic case. This allows us to construct this type of pseudopotential for the whole Periodic Table, and we present a complete table of pseudopotential parameters for all the elements from H to Rn. The relativistic version of this pseudopotential retains all the advantages of its nonrelativistic version. It is separable by construction, it is optimal for integration on a real-space grid, it is highly accurate, and, due to its analytic form, it can be specified by a very small number of parameters. The accuracy of the pseudopotential is illustrated by an extensive series of molecular calculations.

2,845 citations

Journal ArticleDOI
TL;DR: A library of Gaussian basis sets that has been specifically optimized to perform accurate molecular calculations based on density functional theory and can be used in first principles molecular dynamics simulations and is well suited for linear scaling calculations.
Abstract: We present a library of Gaussian basis sets that has been specifically optimized to perform accurate molecular calculations based on density functional theory. It targets a wide range of chemical environments, including the gas phase, interfaces, and the condensed phase. These generally contracted basis sets, which include diffuse primitives, are obtained minimizing a linear combination of the total energy and the condition number of the overlap matrix for a set of molecules with respect to the exponents and contraction coefficients of the full basis. Typically, for a given accuracy in the total energy, significantly fewer basis functions are needed in this scheme than in the usual split valence scheme, leading to a speedup for systems where the computational cost is dominated by diagonalization. More importantly, binding energies of hydrogen bonded complexes are of similar quality as the ones obtained with augmented basis sets, i.e., have a small (down to 0.2 kcal/mol) basis set superposition error, and the monomers have dipoles within 0.1 D of the basis set limit. However, contrary to typical augmented basis sets, there are no near linear dependencies in the basis, so that the overlap matrix is always well conditioned, also, in the condensed phase. The basis can therefore be used in first principles molecular dynamics simulations and is well suited for linear scaling calculations.

2,700 citations

Journal ArticleDOI
18 Feb 1999-Nature
TL;DR: In this article, the authors used ab initio path integral simulations to address the question that the hydrated proton forms a fluxional defect in the hydrogen-bonded network, with both H9O4+ and H5O2+ occurring only in the sense of "limiting" or "ideal" structures.
Abstract: Explanations for the anomalously high mobility of protons in liquid water began with Grotthuss's idea1, 2 of ‘structural diffusion’ nearly two centuries ago Subsequent explanations have refined this concept by invoking thermal hopping3, 4, proton tunnelling5, 6 or solvation effects7 More recently, two main structural models have emerged for the hydrated proton Eigen8, 9 proposed the formation of an H9O4+ complex in which an H3O+ core is strongly hydrogen-bonded to three H2O molecules Zundel10, 11, meanwhile, supported the notion of an H5O2+ complex in which the proton isshared between two H2O molecules Here we use ab initio path integral12,13,14 simulations to address this question These simulations include time-independent equilibrium thermal and quantum fluctuations of all nuclei, and determine interatomic interactions from the electronic structure We find that the hydrated proton forms a fluxional defect in the hydrogen-bonded network, with both H9O4+ and H5O2+ occurring only in thesense of ‘limiting’ or ‘ideal’ structures The defect can become delocalized over several hydrogen bonds owing to quantum fluctuations Solvent polarization induces a small barrier to proton transfer, which is washed out by zero-point motion The proton can consequently be considered part of a ‘low-barrier hydrogen bond’15, 16, in which tunnelling is negligible and the simplest concepts of transition-state theory do not apply The rate of proton diffusion is determined by thermally induced hydrogen-bond breaking in the second solvation shell

1,559 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The M06-2X meta-exchange correlation function is proposed in this paper, which is parametrized including both transition metals and nonmetals, and is a high-non-locality functional with double the amount of nonlocal exchange.
Abstract: We present two new hybrid meta exchange- correlation functionals, called M06 and M06-2X. The M06 functional is parametrized including both transition metals and nonmetals, whereas the M06-2X functional is a high-nonlocality functional with double the amount of nonlocal exchange (2X), and it is parametrized only for nonmetals.The functionals, along with the previously published M06-L local functional and the M06-HF full-Hartree–Fock functionals, constitute the M06 suite of complementary functionals. We assess these four functionals by comparing their performance to that of 12 other functionals and Hartree–Fock theory for 403 energetic data in 29 diverse databases, including ten databases for thermochemistry, four databases for kinetics, eight databases for noncovalent interactions, three databases for transition metal bonding, one database for metal atom excitation energies, and three databases for molecular excitation energies. We also illustrate the performance of these 17 methods for three databases containing 40 bond lengths and for databases containing 38 vibrational frequencies and 15 vibrational zero point energies. We recommend the M06-2X functional for applications involving main-group thermochemistry, kinetics, noncovalent interactions, and electronic excitation energies to valence and Rydberg states. We recommend the M06 functional for application in organometallic and inorganometallic chemistry and for noncovalent interactions.

22,326 citations

Journal ArticleDOI
TL;DR: QUANTUM ESPRESSO as discussed by the authors is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave).
Abstract: QUANTUM ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). The acronym ESPRESSO stands for opEn Source Package for Research in Electronic Structure, Simulation, and Optimization. It is freely available to researchers around the world under the terms of the GNU General Public License. QUANTUM ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively parallel architectures, and a great effort being devoted to user friendliness. QUANTUM ESPRESSO is evolving towards a distribution of independent and interoperable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.

19,985 citations

Journal ArticleDOI
TL;DR: In this article, a new hybrid exchange-correlation functional named CAM-B3LYP is proposed, which combines the hybrid qualities of B3LYP and the long-range correction presented by Tawada et al.

10,882 citations

Journal ArticleDOI
TL;DR: In this paper, a selfconsistent density functional method using standard norm-conserving pseudopotentials and a flexible, numerical linear combination of atomic orbitals basis set, which includes multiple-zeta and polarization orbitals, was developed and implemented.
Abstract: We have developed and implemented a selfconsistent density functional method using standard norm-conserving pseudopotentials and a flexible, numerical linear combination of atomic orbitals basis set, which includes multiple-zeta and polarization orbitals. Exchange and correlation are treated with the local spin density or generalized gradient approximations. The basis functions and the electron density are projected on a real-space grid, in order to calculate the Hartree and exchange-correlation potentials and matrix elements, with a number of operations that scales linearly with the size of the system. We use a modified energy functional, whose minimization produces orthogonal wavefunctions and the same energy and density as the Kohn-Sham energy functional, without the need for an explicit orthogonalization. Additionally, using localized Wannier-like electron wavefunctions allows the computation time and memory required to minimize the energy to also scale linearly with the size of the system. Forces and stresses are also calculated efficiently and accurately, thus allowing structural relaxation and molecular dynamics simulations.

8,723 citations