scispace - formally typeset
Search or ask a question
Author

Jürgen Biener

Bio: Jürgen Biener is an academic researcher from Lawrence Livermore National Laboratory. The author has contributed to research in topics: Nanoporous & National Ignition Facility. The author has an hindex of 34, co-authored 86 publications receiving 5138 citations. Previous affiliations of Jürgen Biener include Stanford University & Harvard University.


Papers
More filters
Journal ArticleDOI
15 Jan 2010-Science
TL;DR: Nanoporous Au, prepared by the dealloying of AuAg alloys, is a new catalyst with a stable structure that is active without any support that catalyzes the selective oxidative coupling of methanol to methyl formate with selectivities above 97% and high turnover frequencies at temperatures below 80°C.
Abstract: Gold (Au) is an interesting catalytic material because of its ability to catalyze reactions, such as partial oxidations, with high selectivities at low temperatures; but limitations arise from the low O2 dissociation probability on Au. This problem can be overcome by using Au nanoparticles supported on suitable oxides which, however, are prone to sintering. Nanoporous Au, prepared by the dealloying of AuAg alloys, is a new catalyst with a stable structure that is active without any support. It catalyzes the selective oxidative coupling of methanol to methyl formate with selectivities above 97% and high turnover frequencies at temperatures below 80 degrees C. Because the overall catalytic characteristics of nanoporous Au are in agreement with studies on Au single crystals, we deduced that the selective surface chemistry of Au is unaltered but that O2 can be readily activated with this material. Residual silver is shown to regulate the availability of reactive oxygen.

1,022 citations

Journal ArticleDOI
TL;DR: This work demonstrates that surface-chemistry-driven actuation can be realized in high-surface-area materials such as nanoporous gold, and achieves reversible strain amplitudes of the order of a few tenths of a per cent by alternating exposure of nanoporous Au to ozone and carbon monoxide.
Abstract: Although actuation in biological systems is exclusively powered by chemical energy, this concept has not been realized in man-made actuator technologies, as these rely on generating heat or electricity first. Here, we demonstrate that surface-chemistry-driven actuation can be realized in high-surface-area materials such as nanoporous gold. For example, we achieve reversible strain amplitudes of the order of a few tenths of a per cent by alternating exposure of nanoporous Au to ozone and carbon monoxide. The effect can be explained by adsorbate-induced changes of the surface stress, and can be used to convert chemical energy directly into a mechanical response, thus opening the door to surface-chemistry-driven actuator and sensor technologies.

491 citations

Journal ArticleDOI
TL;DR: This work deals with the actuation of np-Au by the reversible oxidation of its surface using ozone and the adsorbate controlled coarsening of ligaments, using annealing experiments under ozone or inert gas atmosphere.
Abstract: Nanostructured materials are governed by their surface chemical properties. This is strikingly reflected by np-Au. This material can be generated by corrosion of bulk Ag–Au alloys. Based on a self-organisation process, a 3 dimensional sponge like gold structure evolves with ligaments in the range of only a few tens of nanometers. Due to its continuous porosity, the material can be penetrated by gases which then adsorb and interact with the surface. In this perspective we will review potential applications of np-Au resulting from this effect, namely heterogeneous gas phase catalysis, surface chemistry driven actuation, and adsorbate controlled stability of the nanostructure. We will summarize the current knowledge about the low temperature oxidation of CO as well as the highly selective oxidation of methanol. Furthermore, we will address the question how surface chemistry can influence the material properties itself. In particular, we will deal with (a) the actuation of np-Au by the reversible oxidation of its surface using ozone and (b) the adsorbate controlled coarsening of ligaments, using annealing experiments under ozone or inert gas atmosphere.

313 citations

Journal ArticleDOI
TL;DR: In this article, the dealloying of nanoporous copper was used to synthesize uniform porous structures, but they found cracking to be unavoidable and showed that despite the presence of unavoidable defects, the nanoporous material still exhibits higher than expected yield strength.
Abstract: Monolithic nanoporous copper was synthesized by dealloying Mn0.7Cu0.3 by two distinct methods: potentiostatically driven dealloying and free corrosion. Both the ligament size and morphology were found to be highly dependent on the dealloying methods and conditions. For example, ligaments from 16 nm–125 nm were obtained by dealloying either electrochemically or by free corrosion, respectively. Optimization of the starting Mn–Cu alloy microstructure allowed us to synthesize uniform porous structures; but we found cracking to be unavoidable. Despite the presence of unavoidable defects, the nanoporous material still exhibits higher than expected yield strength.

270 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
Ulrike Diebold1
TL;DR: Titanium dioxide is the most investigated single-crystalline system in the surface science of metal oxides, and the literature on rutile (1.1) and anatase surfaces is reviewed in this paper.

7,056 citations

Journal ArticleDOI
TL;DR: This Review will compare the results obtained from different systems and try to give a picture on how different types of metal species work in different reactions and give perspectives on the future directions toward better understanding of the catalytic behavior of different metal entities in a unifying manner.
Abstract: Metal species with different size (single atoms, nanoclusters, and nanoparticles) show different catalytic behavior for various heterogeneous catalytic reactions. It has been shown in the literature that many factors including the particle size, shape, chemical composition, metal–support interaction, and metal–reactant/solvent interaction can have significant influences on the catalytic properties of metal catalysts. The recent developments of well-controlled synthesis methodologies and advanced characterization tools allow one to correlate the relationships at the molecular level. In this Review, the electronic and geometric structures of single atoms, nanoclusters, and nanoparticles will be discussed. Furthermore, we will summarize the catalytic applications of single atoms, nanoclusters, and nanoparticles for different types of reactions, including CO oxidation, selective oxidation, selective hydrogenation, organic reactions, electrocatalytic, and photocatalytic reactions. We will compare the results o...

2,700 citations

01 Nov 2000
TL;DR: In this paper, the authors compared the power density characteristics of ultracapacitors and batteries with respect to the same charge/discharge efficiency, and showed that the battery can achieve energy densities of 10 Wh/kg or higher with a power density of 1.2 kW/kg.
Abstract: The science and technology of ultracapacitors are reviewed for a number of electrode materials, including carbon, mixed metal oxides, and conducting polymers. More work has been done using microporous carbons than with the other materials and most of the commercially available devices use carbon electrodes and an organic electrolytes. The energy density of these devices is 3¯5 Wh/kg with a power density of 300¯500 W/kg for high efficiency (90¯95%) charge/discharges. Projections of future developments using carbon indicate that energy densities of 10 Wh/kg or higher are likely with power densities of 1¯2 kW/kg. A key problem in the fabrication of these advanced devices is the bonding of the thin electrodes to a current collector such the contact resistance is less than 0.1 cm2. Special attention is given in the paper to comparing the power density characteristics of ultracapacitors and batteries. The comparisons should be made at the same charge/discharge efficiency.

2,437 citations

Journal ArticleDOI
TL;DR: This Review focuses on noncovalent functionalization of graphene and graphene oxide with various species involving biomolecules, polymers, drugs, metals and metal oxide-based nanoparticles, quantum dots, magnetic nanostructures, other carbon allotropes, and graphene analogues.
Abstract: This Review focuses on noncovalent functionalization of graphene and graphene oxide with various species involving biomolecules, polymers, drugs, metals and metal oxide-based nanoparticles, quantum dots, magnetic nanostructures, other carbon allotropes (fullerenes, nanodiamonds, and carbon nanotubes), and graphene analogues (MoS2, WS2). A brief description of π–π interactions, van der Waals forces, ionic interactions, and hydrogen bonding allowing noncovalent modification of graphene and graphene oxide is first given. The main part of this Review is devoted to tailored functionalization for applications in drug delivery, energy materials, solar cells, water splitting, biosensing, bioimaging, environmental, catalytic, photocatalytic, and biomedical technologies. A significant part of this Review explores the possibilities of graphene/graphene oxide-based 3D superstructures and their use in lithium-ion batteries. This Review ends with a look at challenges and future prospects of noncovalently modified graph...

1,799 citations