scispace - formally typeset
Search or ask a question
Author

Jurgen Herre

Bio: Jurgen Herre is an academic researcher from Cambridge University Hospitals NHS Foundation Trust. The author has contributed to research in topics: Computer science & Innate immune system. The author has an hindex of 12, co-authored 29 publications receiving 2638 citations. Previous affiliations of Jurgen Herre include University of Cambridge & University of Oxford.

Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that Dectin-1 mediates the production of TNF-α in response to zymosan and live fungal pathogens, an activity that occurs at the cell surface and requires the cytoplasmic tail and immunoreceptor tyrosine activation motif of Dect in addition to Toll-like receptor (TLR)-2 and Myd88.
Abstract: The ability of fungal-derived β-glucan particles to induce leukocyte activation and the production of inflammatory mediators, such as tumor necrosis factor (TNF)-α, is a well characterized phenomenon. Although efforts have been made to understand how these carbohydrate polymers exert their immunomodulatory effects, the receptors involved in generating these responses are unknown. Here we show that Dectin-1 mediates the production of TNF-α in response to zymosan and live fungal pathogens, an activity that occurs at the cell surface and requires the cytoplasmic tail and immunoreceptor tyrosine activation motif of Dectin-1 as well as Toll-like receptor (TLR)-2 and Myd88. This is the first demonstration that the inflammatory response to pathogens requires recognition by a specific receptor in addition to the TLRs. Furthermore, these studies implicate Dectin-1 in the production of TNF-α in response to fungi, a critical step required for the successful control of these pathogens.

1,142 citations

Journal ArticleDOI
15 Dec 2004-Blood
TL;DR: Dectin-1, a proinflammatory nonopsonic receptor for beta-glucans, is examined, and it is shown that it mediates the internalization of beta- glucan-bearing ligands, including yeast particles.

433 citations

Journal ArticleDOI
TL;DR: It is shown that Dectin-1, a murine type II C-type lectin-like receptor, was able to non-opsonically recognize β- 1,3 and β-2,6 linked glucan rich particles and intact yeast.

249 citations

Journal ArticleDOI
TL;DR: This study has studied the mannose-binding potential of murine Mφ and identified the dendritic cell-specific ICAM-3-grabbing nonintegrin homolog, SIGN-related 1 (SIGNR1), as a major MR on murine resident peritoneal M φ.
Abstract: We recently demonstrated that the beta-glucan receptor Dectin-1 (betaGR) was the major nonopsonic beta-glucan receptor on macrophages (Mphi) for the yeast-derived particle zymosan However, on resident peritoneal Mphi, we identified an additional mannan-inhibitable receptor for zymosan that was distinct from the Mphi mannose receptor (MR) In this study, we have studied the mannose-binding potential of murine Mphi and identified the dendritic cell-specific ICAM-3-grabbing nonintegrin homolog, SIGN-related 1 (SIGNR1), as a major MR on murine resident peritoneal Mphi Both SIGNR1 and betaGR cooperated in the nonopsonic recognition of zymosan by these Mphi When SIGNR1 was introduced into NIH3T3 fibroblasts or RAW 2647 Mphi, it conferred marked zymosan-binding potential on these cells However, in the nonprofessional phagocytes (NIH3T3), SIGNR1 was found to be poorly phagocytic, suggesting that other receptors such as betaGR may play a more dominant role in particle internalization on professional phagocytes Binding of zymosan to RAW 2647 Mphi expressing SIGNR1 resulted in TNF-alpha production Treatment of RAW 2647 Mphi expressing SIGNR1, which express low levels of betaGR, with beta-glucans had little effect on binding or TNF-alpha production, indicating that there was no absolute requirement for betaGR in this process These studies have identified SIGNR1 as a major MR for fungal and other pathogens present on specific subsets of Mphi

199 citations

Journal ArticleDOI
TL;DR: Among patients without substantial lung entrapment, the outpatient administration of talc through an indwelling pleural catheter for the treatment of malignant pleural effusion resulted in a significantly higher chance of pleurodesis at 35 days than an ind welling catheter alone, with no deleterious effects.
Abstract: Background Malignant pleural effusion affects more than 750,000 persons each year across Europe and the United States. Pleurodesis with the administration of talc in hospitalized patients is the most common treatment, but indwelling pleural catheters placed for drainage offer an ambulatory alternative. We examined whether talc administered through an indwelling pleural catheter was more effective at inducing pleurodesis than the use of an indwelling pleural catheter alone. Methods Over a period of 4 years, we recruited patients with malignant pleural effusion at 18 centers in the United Kingdom. After the insertion of an indwelling pleural catheter, patients underwent drainage regularly on an outpatient basis. If there was no evidence of substantial lung entrapment (nonexpandable lung, in which lung expansion and pleural apposition are not possible because of visceral fibrosis or bronchial obstruction) at 10 days, patients were randomly assigned to receive either 4 g of talc slurry or placebo thr...

166 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Two nonviral gene delivery systems using either biodegradable poly(D,Llactide-co-glycolide) (PLG) nanoparticles or cell penetrating peptide (CPP) complexes have been designed and studied using A549 human lung epithelial cells.
Abstract: The development of nonviral vectors for safe and efficient gene delivery has been gaining considerable attention recently. An ideal nonviral vector must protect the gene against degradation by nuclease in the extracellular matrix, internalize the plasma membrane, escape from the endosomal compartment, unpackage the gene at some point and have no detrimental effects. In comparison to viruses, nonviral vectors are relatively easy to synthesize, less immunogenic, low in cost, and have no limitation in the size of a gene that can be delivered. Significant progress has been made in the basic science and applications of various nonviral gene delivery vectors; however, the majority of nonviral approaches are still inefficient and often toxic. To this end, two nonviral gene delivery systems using either biodegradable poly(D,Llactide-co-glycolide) (PLG) nanoparticles or cell penetrating peptide (CPP) complexes have been designed and studied using A549 human lung epithelial cells. PLG nanoparticles were optimized for gene delivery by varying particle surface chemistry using different coating materials that adsorb to the particle surface during formation. A variety of cationic coating materials were studied and compared to more conventional surfactants used for PLG nanoparticle fabrication. Nanoparticles (~200 nm) efficiently encapsulated plasmids encoding for luciferase (80-90%) and slowly released the same for two weeks. After a delay, moderate levels of gene expression appeared at day 5 for certain positively charged PLG particles and gene expression was maintained for at least two weeks. In contrast, gene expression mediated by polyethyleneimine (PEI) ended at day 5. PLG particles were also significantly less

2,189 citations

Journal ArticleDOI
27 Sep 2007-Nature
TL;DR: Some medical implications of DC biology that account for illness and provide opportunities for prevention and therapy are presented.
Abstract: Dendritic cells (DCs) orchestrate a repertoire of immune responses that bring about resistance to infection and silencing or tolerance to self. In the settings of infection and cancer, microbes and tumours can exploit DCs to evade immunity, but DCs also can generate resistance, a capacity that is readily enhanced with DC-targeted vaccines. During allergy, autoimmunity and transplant rejection, DCs instigate unwanted responses that cause disease, but, again, DCs can be harnessed to silence these conditions with novel therapies. Here we present some medical implications of DC biology that account for illness and provide opportunities for prevention and therapy.

2,029 citations

Journal ArticleDOI
TL;DR: Research in this field is entering an exciting period of transition from studying the molecular and cellular bases of fungal virulence to determining the cellular and molecular mechanisms that maintain immune homeostasis with fungi.
Abstract: Fungal diseases represent an important paradigm in immunology, as they can result from either a lack of recognition by the immune system or overactivation of the inflammatory response. Research in this field is entering an exciting period of transition from studying the molecular and cellular bases of fungal virulence to determining the cellular and molecular mechanisms that maintain immune homeostasis with fungi. The fine line between these two research areas is central to our understanding of tissue homeostasis and its possible breakdown in fungal infections and diseases. Recent insights into immune responses to fungi suggest that functionally distinct mechanisms have evolved to achieve optimal host-fungus interactions in mammals.

1,528 citations

Journal ArticleDOI
TL;DR: Recent advances in the understanding of the intracellular mechanisms of cross-presentation are summarized and its role in immunity and tolerance in the context of specialization between DC subsets is discussed.
Abstract: The presentation of exogenous antigens on MHC class I molecules, known as cross-presentation, is essential for the initiation of CD8(+) T cell responses. In vivo, cross-presentation is mainly carried out by specific dendritic cell (DC) subsets through an adaptation of their endocytic and phagocytic pathways. Here, we summarize recent advances in our understanding of the intracellular mechanisms of cross-presentation and discuss its role in immunity and tolerance in the context of specialization between DC subsets. Finally, we review current strategies to use cross-presentation for immunotherapy.

1,297 citations

Journal ArticleDOI
TL;DR: This review covers recent studies of selected families of structurally defined molecules, studies that have improved understanding of ligand discrimination in the absence of opsonins and differential responses by macrophages and related myeloid cells.
Abstract: Macrophages express a broad range of plasma membrane receptors that mediate their interactions with natural and altered-self components of the host as well as a range of microorganisms. Recognition is followed by surface changes, uptake, signaling, and altered gene expression, contributing to homeostasis, host defense, innate effector mechanisms, and the induction of acquired immunity. This review covers recent studies of selected families of structurally defined molecules, studies that have improved understanding of ligand discrimination in the absence of opsonins and differential responses by macrophages and related myeloid cells.

1,280 citations