scispace - formally typeset
Search or ask a question
Author

Jürgen M. Lehmann

Bio: Jürgen M. Lehmann is an academic researcher from Research Triangle Park. The author has contributed to research in topics: Peroxisome proliferator-activated receptor & Receptor. The author has an hindex of 41, co-authored 56 publications receiving 22350 citations. Previous affiliations of Jürgen M. Lehmann include Ludwig Maximilian University of Munich & National Foundation for Cancer Research.


Papers
More filters
Journal ArticleDOI
TL;DR: It is reported that thiazolidinediones are potent and selective activators of peroxisome proliferator-activated receptor γ (PPARγ), a member of the nuclear receptor superfamily recently shown to function in adipogenesis, and raised the intriguing possibility that PPARγ is a target for the therapeutic actions of this class of compounds.

3,635 citations

Journal ArticleDOI
01 Dec 1995-Cell
TL;DR: The PGJ2 and its derivatives are efficacious activators of peroxisome proliferator-activated receptors alpha and gamma (PPAR alpha and PPAR gamma, respectively), orphan nuclear receptors implicated in lipid homeostasis and adipocyte differentiation and suggest a novel mechanism of action for PGs of the J2 series.

2,081 citations

Journal ArticleDOI
TL;DR: Evidence that PPARs serve as physiological sensors of lipid levels is provided and a molecular mechanism whereby dietary fatty acids can modulate lipid homeostasis is suggested.
Abstract: Peroxisome proliferator-activated receptors (PPARs) alpha and gamma are key regulators of lipid homeostasis and are activated by a structurally diverse group of compounds including fatty acids, eicosanoids, and hypolipidemic drugs such as fibrates and thiazolidinediones. While thiazolidinediones and 15-deoxy-Delta12, 14-prostaglandin J2 have been shown to bind to PPARgamma, it has remained unclear whether other activators mediate their effects through direct interactions with the PPARs or via indirect mechanisms. Here, we describe a novel fibrate, designated GW2331, that is a high-affinity ligand for both PPARalpha and PPARgamma. Using GW2331 as a radioligand in competition binding assays, we show that certain mono- and polyunsaturated fatty acids bind directly to PPARalpha and PPARgamma at physiological concentrations, and that the eicosanoids 8(S)-hydroxyeicosatetraenoic acid and 15-deoxy-Delta12,14-prostaglandin J2 can function as subtype-selective ligands for PPARalpha and PPARgamma, respectively. These data provide evidence that PPARs serve as physiological sensors of lipid levels and suggest a molecular mechanism whereby dietary fatty acids can modulate lipid homeostasis.

2,054 citations

Journal ArticleDOI
21 May 1999-Science
TL;DR: Results provide evidence for a nuclear bile acid signaling pathway that may regulate cholesterol homeostasis and modulated interaction of FXR with a peptide derived from steroid receptor coactivator 1.
Abstract: Bile acids regulate the transcription of genes that control cholesterol homeostasis through molecular mechanisms that are poorly understood. Physiological concentrations of free and conjugated chenodeoxycholic acid, lithocholic acid, and deoxycholic acid activated the farnesoid X receptor (FXR; NR1H4), an orphan nuclear receptor. As ligands, these bile acids and their conjugates modulated interaction of FXR with a peptide derived from steroid receptor coactivator 1. These results provide evidence for a nuclear bile acid signaling pathway that may regulate cholesterol homeostasis.

2,044 citations

Journal ArticleDOI
TL;DR: The identification of a human (h) orphan nuclear receptor, termed the pregnane X receptor (PXR), that binds to a response element in the CYP3A4 promoter and is activated by a range of drugs known to induce CYP 3A4 expression is reported.
Abstract: The cytochrome P-450 monooxygenase 3A4 (CYP3A4) is responsible for the oxidative metabolism of a wide variety of xenobiotics including an estimated 60% of all clinically used drugs. Although expression of the CYP3A4 gene is known to be induced in response to a variety of compounds, the mechanism underlying this induction, which represents a basis for drug interactions in patients, has remained unclear. We report the identification of a human (h) orphan nuclear receptor, termed the pregnane X receptor (PXR), that binds to a response element in the CYP3A4 promoter and is activated by a range of drugs known to induce CYP3A4 expression. Comparison of hPXR with the recently cloned mouse PXR reveals marked differences in their activation by certain drugs, which may account in part for the species-specific effects of compounds on CYP3A gene expression. These findings provide a molecular explanation for the ability of disparate chemicals to induce CYP3A4 levels and, furthermore, provide a basis for developing in vitro assays to aid in predicting whether drugs will interact in humans.

1,551 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review considers recent findings regarding GC action and generates criteria for determining whether a particular GC action permits, stimulates, or suppresses an ongoing stress-response or, as an additional category, is preparative for a subsequent stressor.
Abstract: The secretion of glucocorticoids (GCs) is a classic endocrine response to stress. Despite that, it remains controversial as to what purpose GCs serve at such times. One view, stretching back to the time of Hans Selye, posits that GCs help mediate the ongoing or pending stress response, either via basal levels of GCs permitting other facets of the stress response to emerge efficaciously, and/or by stress levels of GCs actively stimulating the stress response. In contrast, a revisionist viewpoint posits that GCs suppress the stress response, preventing it from being pathologically overactivated. In this review, we consider recent findings regarding GC action and, based on them, generate criteria for determining whether a particular GC action permits, stimulates, or suppresses an ongoing stressresponse or, as an additional category, is preparative for a subsequent stressor. We apply these GC actions to the realms of cardiovascular function, fluid volume and hemorrhage, immunity and inflammation, metabolism, neurobiology, and reproductive physiology. We find that GC actions fall into markedly different categories, depending on the physiological endpoint in question, with evidence for mediating effects in some cases, and suppressive or preparative in others. We then attempt to assimilate these heterogeneous GC actions into a physiological whole. (Endocrine Reviews 21: 55‐ 89, 2000)

6,707 citations

Journal ArticleDOI
TL;DR: The development of brown adipose tissue with its characteristic protein, uncoupling protein-1 (UCP1), was probably determinative for the evolutionary success of mammals, as its thermogenesis enhances neonatal survival and allows for active life even in cold surroundings.
Abstract: Cannon, Barbara, and Jan Nedergaard. Brown Adipose Tissue: Function and Physiological Significance. Physiol Rev 84: 277–359, 2004; 10.1152/physrev.00015.2003.—The function of brown adipose tissue i...

5,470 citations

Journal ArticleDOI
18 Jan 2001-Nature
TL;DR: It is shown that adipocytes secrete a unique signalling molecule, which is named resistin (for resistance to insulin), which circulating resistin levels are decreased by the anti-diabetic drug rosiglitazone, and increased in diet-induced and genetic forms of obesity.
Abstract: Diabetes mellitus is a chronic disease that leads to complications including heart disease, stroke, kidney failure, blindness and nerve damage. Type 2 diabetes, characterized by target-tissue resistance to insulin, is epidemic in industrialized societies and is strongly associated with obesity; however, the mechanism by which increased adiposity causes insulin resistance is unclear. Here we show that adipocytes secrete a unique signalling molecule, which we have named resistin (for resistance to insulin). Circulating resistin levels are decreased by the anti-diabetic drug rosiglitazone, and increased in diet-induced and genetic forms of obesity. Administration of anti-resistin antibody improves blood sugar and insulin action in mice with diet-induced obesity. Moreover, treatment of normal mice with recombinant resistin impairs glucose tolerance and insulin action. Insulin-stimulated glucose uptake by adipocytes is enhanced by neutralization of resistin and is reduced by resistin treatment. Resistin is thus a hormone that potentially links obesity to diabetes.

4,557 citations

Journal ArticleDOI
29 Sep 2006-Science
TL;DR: The first installment of a reference collection of gene-expression profiles from cultured human cells treated with bioactive small molecules is created, and it is demonstrated that this “Connectivity Map” resource can be used to find connections among small molecules sharing a mechanism of action, chemicals and physiological processes, and diseases and drugs.
Abstract: To pursue a systematic approach to the discovery of functional connections among diseases, genetic perturbation, and drug action, we have created the first installment of a reference collection of gene-expression profiles from cultured human cells treated with bioactive small molecules, together with pattern-matching software to mine these data. We demonstrate that this "Connectivity Map" resource can be used to find connections among small molecules sharing a mechanism of action, chemicals and physiological processes, and diseases and drugs. These results indicate the feasibility of the approach and suggest the value of a large-scale community Connectivity Map project.

4,429 citations

Journal ArticleDOI
TL;DR: By better understanding AD inflammatory and immunoregulatory processes, it should be possible to develop anti-inflammatory approaches that may not cure AD but will likely help slow the progression or delay the onset of this devastating disorder.

4,319 citations