scispace - formally typeset
Search or ask a question
Author

Jürgen Weis

Bio: Jürgen Weis is an academic researcher from University of Ulm. The author has contributed to research in topics: Field-effect transistor & Transistor. The author has an hindex of 1, co-authored 1 publications receiving 540 citations.

Papers
More filters
Journal ArticleDOI
31 May 1991-Science
TL;DR: An identified neuron of the leech, a Retzius cell, has been attached to the open gate of a p-channel field-effect transistor, and weak signals that resemble the first derivative of the action potential were observed.
Abstract: An identified neuron of the leech, a Retzius cell, has been attached to the open gate of a p-channel field-effect transistor. Action potentials, spontaneous or stimulated, modulate directly the source-drain current in silicon. The electronic signals match the shape of the action potential. The average voltage on the gate was up to 25 percent of the intracellular voltage change. Occasionally weak signals that resemble the first derivative of the action potential were observed. The junctions can be described by a model that includes capacitive coupling of the plasma membrane and the gate oxide and that accounts for variable resistance of the seal.

564 citations


Cited by
More filters
Journal ArticleDOI
05 Jan 1996-Science
TL;DR: Supporting lipid-protein bilayers form versatile models of low-dimensionality complex fluids, which can be used to study interfacial forces and wetting phenomena, and enable the design of phantom cells to explore the interplay of lock-and-key forces and universal forces for cell adhesion.
Abstract: Scientific and practical applications of supported lipid-protein bilayers are described. Membranes can be covalently coupled to or separated from solids by ultrathin layers of water or soft polymer cushions. The latter systems maintain the structural and dynamic properties of free bilayers, forming a class of models of biomembranes that allow the application of a manifold of surface-sensitive techniques. They form versatile models of low-dimensionality complex fluids, which can be used to study interfacial forces and wetting phenomena, and enable the design of phantom cells to explore the interplay of lock-and-key forces (such as receptor-ligand binding) and universal forces for cell adhesion. Practical applications are the design of (highly selective) receptor surfaces of biosensors on electrooptical devices or the biofunctionalization of inorganic solids.

2,123 citations

Journal ArticleDOI
TL;DR: Biological surface science (BioSS) as discussed by the authors is a broad interdisciplinary area where properties and processes at interfaces between synthetic materials and biological environments are investigated and bio functional surfaces are fabricated.

1,123 citations

Journal ArticleDOI
Beatriz Pelaz1, Christoph Alexiou2, Ramon A. Alvarez-Puebla3, Frauke Alves4, Frauke Alves5, Anne M. Andrews6, Sumaira Ashraf1, Lajos P. Balogh, Laura Ballerini7, Alessandra Bestetti8, Cornelia Brendel1, Susanna Bosi9, Mónica Carril10, Warren C. W. Chan11, Chunying Chen, Xiaodong Chen12, Xiaoyuan Chen13, Zhen Cheng14, Daxiang Cui15, Jianzhong Du16, Christian Dullin4, Alberto Escudero1, Alberto Escudero17, Neus Feliu18, Mingyuan Gao, Michael D. George, Yury Gogotsi19, Arnold Grünweller1, Zhongwei Gu20, Naomi J. Halas21, Norbert Hampp1, Roland K. Hartmann1, Mark C. Hersam22, Patrick Hunziker23, Ji Jian24, Xingyu Jiang, Philipp Jungebluth25, Pranav Kadhiresan11, Kazunori Kataoka26, Ali Khademhosseini27, Jindřich Kopeček28, Nicholas A. Kotov29, Harald F. Krug30, Dong Soo Lee31, Claus-Michael Lehr32, Kam W. Leong33, Xing-Jie Liang34, Mei Ling Lim18, Luis M. Liz-Marzán10, Xiaowei Ma34, Paolo Macchiarini35, Huan Meng6, Helmuth Möhwald5, Paul Mulvaney8, Andre E. Nel6, Shuming Nie36, Peter Nordlander21, Teruo Okano, Jose Oliveira, Tai Hyun Park31, Reginald M. Penner37, Maurizio Prato10, Maurizio Prato9, Víctor F. Puntes38, Vincent M. Rotello39, Amila Samarakoon11, Raymond E. Schaak40, Youqing Shen24, Sebastian Sjöqvist18, Andre G. Skirtach5, Andre G. Skirtach41, Mahmoud Soliman1, Molly M. Stevens42, Hsing-Wen Sung43, Ben Zhong Tang44, Rainer Tietze2, Buddhisha Udugama11, J. Scott VanEpps29, Tanja Weil45, Tanja Weil5, Paul S. Weiss6, Itamar Willner46, Yuzhou Wu47, Yuzhou Wu5, Lily Yang, Zhao Yue1, Qian Zhang1, Qiang Zhang48, Xian-En Zhang, Yuliang Zhao, Xin Zhou, Wolfgang J. Parak1 
14 Mar 2017-ACS Nano
TL;DR: An overview of recent developments in nanomedicine is provided and the current challenges and upcoming opportunities for the field are highlighted and translation to the clinic is highlighted.
Abstract: The design and use of materials in the nanoscale size range for addressing medical and health-related issues continues to receive increasing interest. Research in nanomedicine spans a multitude of areas, including drug delivery, vaccine development, antibacterial, diagnosis and imaging tools, wearable devices, implants, high-throughput screening platforms, etc. using biological, nonbiological, biomimetic, or hybrid materials. Many of these developments are starting to be translated into viable clinical products. Here, we provide an overview of recent developments in nanomedicine and highlight the current challenges and upcoming opportunities for the field and translation to the clinic.

926 citations

Journal ArticleDOI
29 Sep 2005-Nature
TL;DR: This work focuses on lipid-bilayer membranes supported on solid substrates, which are widely used as cell-surface models that connect biological and artificial materials and when these systems are coupled with advanced semiconductor technology.
Abstract: Lipid-bilayer membranes supported on solid substrates are widely used as cell-surface models that connect biological and artificial materials. They can be placed either directly on solids or on ultrathin polymer supports that mimic the generic role of the extracellular matrix. The tools of modern genetic engineering and bioorganic chemistry make it possible to couple many types of biomolecule to supported membranes. This results in sophisticated interfaces that can be used to control, organize and study the properties and function of membranes and membrane-associated proteins. Particularly exciting opportunities arise when these systems are coupled with advanced semiconductor technology.

887 citations

Journal ArticleDOI
TL;DR: A critical overview of the peripheral interfaces available and trace their use from research to clinical application in controlling artificial and robotic prostheses is provided.
Abstract: Considerable scientific and technological efforts have been devoted to develop neuroprostheses and hybrid bionic systems that link the human nervous system with electronic or robotic prostheses, with the main aim of restoring motor and sensory functions in disabled patients. A number of neuroprostheses use interfaces with peripheral nerves or muscles for neuromuscular stimulation and signal recording. Herein, we provide a critical overview of the peripheral interfaces available and trace their use from research to clinical application in controlling artificial and robotic prostheses. The first section reviews the different types of non-invasive and invasive electrodes, which include surface and muscular electrodes that can record EMG signals from and stimulate the underlying or implanted muscles. Extraneural electrodes, such as cuff and epineurial electrodes, provide simultaneous interface with many axons in the nerve, whereas intrafascicular, penetrating, and regenerative electrodes may contact small groups of axons within a nerve fascicle. Biological, technological, and material science issues are also reviewed relative to the problems of electrode design and tissue injury. The last section reviews different strate- gies for the use of information recorded from peripheral interfaces and the current state of control neuroprostheses and hybrid bionic systems.

802 citations