scispace - formally typeset
Search or ask a question
Author

Jurriaan Schmitz

Other affiliations: University of Twente, Philips
Bio: Jurriaan Schmitz is an academic researcher from MESA+ Institute for Nanotechnology. The author has contributed to research in topics: Silicon & Gate dielectric. The author has an hindex of 30, co-authored 296 publications receiving 3756 citations. Previous affiliations of Jurriaan Schmitz include University of Twente & Philips.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a simulation study on a new rectifier concept is presented, which basically consists of two gates with different workfunctions on top of a thin intrinsic or lowly doped silicon body.
Abstract: A simulation study on a new rectifier concept is presented. This device basically consists of two gates with different workfunctions on top of a thin intrinsic or lowly doped silicon body. The workfunctions and layer thicknesses are chosen such that an electron plasma is formed on one side of the silicon body and a hole plasma on the other, i.e., a charge plasma p-n diode is formed in which no doping is required. Simulation results reveal a good rectifying behavior for well-chosen gate workfunctions and device dimensions. This concept could be applied for other semiconductor devices and materials as well in which doping is an issue.

259 citations

Journal ArticleDOI
TL;DR: It is demonstrated that a silicon-based electrical source for SPPs can be fabricated using established microtechnology processes that are compatible with backend CMOS technology.
Abstract: After decades of process scaling driven by Moore's law, the silicon microelectronics world is now defined by length scales that are many times smaller than the dimensions of typical micro-optical components. This size mismatch poses an important challenge for those working to integrate photonics with complementary metal oxide semiconductor (CMOS) electronics technology. One promising solution is to fabricate optical systems at metal/dielectric interfaces, where electromagnetic modes called surface plasmon polaritons (SPPs) offer unique opportunities to confine and control light at length scales below 100 nm (refs 1, 2). Research groups working in the rapidly developing field of plasmonics have now demonstrated many passive components that suggest the potential of SPPs for applications in sensing and optical communication. Recently, active plasmonic devices based on III-V materials and organic materials have been reported. An electrical source of SPPs was recently demonstrated using organic semiconductors by Koller and colleagues. Here we show that a silicon-based electrical source for SPPs can be fabricated using established low-temperature microtechnology processes that are compatible with back-end CMOS technology.

206 citations

Journal ArticleDOI
TL;DR: In this article, a lateral Schottky-based rectifier called the charge-plasma diode realized on ultrathin silicon-on-insulator was proposed, which utilizes the workfunction difference between two metal contacts, palladium and erbium, and the silicon body.
Abstract: We present a new lateral Schottky-based rectifier called the charge-plasma diode realized on ultrathin silicon-on-insulator. The device utilizes the workfunction difference between two metal contacts, palladium and erbium, and the silicon body. We demonstrate that the proposed device provides a low and constant reverse leakage-current density of about 1 fA/μm with ON/OFF current ratios of around 107 at 1-V forward bias and room temperature. In the forward mode, a current swing of 88 mV/dec is obtained, which is reduced to 68 mV/dec by back-gate biasing.

197 citations

Patent
13 Dec 1996
TL;DR: In this article, a SiGe layer and the intrinsic surface region are provided epitaxially, the thickness of the siGe layer being so small that the lattice constants in the epitaxial layers do not or substantially not differ from those in the substrate in a plane parallel to the surface, while a sufficient diffusion-inhibiting effect is retained.
Abstract: To obtain a high mobility and a suitable threshold voltage in MOS transistors with channel dimensions in the deep sub-micron range, it is desirable to bury a strongly doped layer (or ground plane) in the channel region below a weakly doped intrinsic surface region, a few tens of nm below the surface. It was found, however, that degradation of the mobility can occur particularly in n-channel transistors owing to diffusion of boron atoms from the strongly doped layer to the surface, for example during the formation of the gate oxide. To prevent this degradation, a thin layer 11 of Si 1−x Ge x inhibiting boron diffusion is provided between the strongly doped layer 10 and the intrinsic surface region 7 , for example with x=0.3. The SiGe layer and the intrinsic surface region may be provided epitaxially, the thickness of the SiGe layer being so small that the lattice constants in the epitaxial layers do not or substantially not differ from those in the substrate 1 in a plane parallel to the surface, while a sufficient diffusion-inhibiting effect is retained. Since SiGe has a diffusion-accelerating rather than decelerating effect on n-type dopants, the ground plane of a p-channel transistor in a CMOS embodiment is doped with As or Sb because of the low diffusion rate of these elements in pure silicon.

151 citations

Journal ArticleDOI
TL;DR: In this article, the performance of a fine-grained 13-ton lead/scintillating-fiber calorimeter, in particular on its response to electrons, pions and multiparticles (reaction products from pions interacting in a target upstream of the detector).
Abstract: We report on the performance of a fine-grained 13-ton lead/scintillating-fiber calorimeter, in particular on its response to electrons, pions and multiparticles (reaction products from pions interacting in a target upstream of the detector). The detector signals were studied for particles in the energy range 5–150 GeV. The energy resolution was measured to be 12.9% √E for electrons, plus a constant term dependent on the angle θZ between the particle's direction and the fiber axis. This term, which is 1.2% for θz = 3°, is shown to be due to anomalous sampling in the early shower stage. It is greatly reduced when only electrons entering the detector in the lead are considered. A 1.7X0 thick preshower detector, installed 12 cm in front of the calorimeter, only affected the signal linearity for electrons at low energy. The effect on the energy resolution was negligible. Single pions were detected with an energy resolution of ∼ 30%/√E plus a constant term, which turned out to be mainly due to the effects of light attenuation in the fibers. Knowing the impact point of the particles, these effects could be efficiently removed for single pions. For jets (multiparticles), the effects of light attenuation are much less important, leading to considerably better on-line energy resolutions. The e π signal ratio was measured to range from 1.03 at 80 GeV to 1.10 at 5 GeV, for a detector with an effective radius of 49 cm. After correcting for the instrumental effects, we found the intrinsic e h value of this detector (with our particular choice of fibers and sampling fraction) to be 1.15±0.02. Detailed results are given on the detector performance (energy resolution, e π signal ratio, e/jet signal ratio) as a function of the lateral detector size and as a function of the jet multiplicity.

92 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: Recent advances at the intersection of plasmonics and photovoltaics are surveyed and an outlook on the future of solar cells based on these principles is offered.
Abstract: The emerging field of plasmonics has yielded methods for guiding and localizing light at the nanoscale, well below the scale of the wavelength of light in free space. Now plasmonics researchers are turning their attention to photovoltaics, where design approaches based on plasmonics can be used to improve absorption in photovoltaic devices, permitting a considerable reduction in the physical thickness of solar photovoltaic absorber layers, and yielding new options for solar-cell design. In this review, we survey recent advances at the intersection of plasmonics and photovoltaics and offer an outlook on the future of solar cells based on these principles.

8,028 citations

Book
Yuan Taur1, Tak H. Ning1
01 Jan 2016
TL;DR: In this article, the authors highlight the intricate interdependencies and subtle tradeoffs between various practically important device parameters, and also provide an in-depth discussion of device scaling and scaling limits of CMOS and bipolar devices.
Abstract: Learn the basic properties and designs of modern VLSI devices, as well as the factors affecting performance, with this thoroughly updated second edition. The first edition has been widely adopted as a standard textbook in microelectronics in many major US universities and worldwide. The internationally-renowned authors highlight the intricate interdependencies and subtle tradeoffs between various practically important device parameters, and also provide an in-depth discussion of device scaling and scaling limits of CMOS and bipolar devices. Equations and parameters provided are checked continuously against the reality of silicon data, making the book equally useful in practical transistor design and in the classroom. Every chapter has been updated to include the latest developments, such as MOSFET scale length theory, high-field transport model, and SiGe-base bipolar devices.

2,680 citations

Journal ArticleDOI
01 Jan 1977-Nature
TL;DR: Bergh and P.J.Dean as discussed by the authors proposed a light-emitting diode (LEDD) for light-aware Diodes, which was shown to have promising performance.
Abstract: Light-Emitting Diodes. (Monographs in Electrical and Electronic Engineering.) By A. A. Bergh and P. J. Dean. Pp. viii+591. (Clarendon: Oxford; Oxford University: London, 1976.) £22.

1,560 citations