scispace - formally typeset
Search or ask a question
Author

Jussi Vuorenmaa

Other affiliations: National Institutes of Health
Bio: Jussi Vuorenmaa is an academic researcher from Finnish Environment Institute. The author has contributed to research in topics: Climate change & Surface runoff. The author has an hindex of 24, co-authored 52 publications receiving 3189 citations. Previous affiliations of Jussi Vuorenmaa include National Institutes of Health.


Papers
More filters
Journal ArticleDOI
22 Nov 2007-Nature
TL;DR: It is shown that rising trends in DOC between 1990 and 2004 can be concisely explained by a simple model based solely on changes in deposition chemistry and catchment acid-sensitivity, and that the rise in DOC is integral to recovery from acidification.
Abstract: Several hypotheses have been proposed to explain recent, widespread increases in concentrations of dissolved organic carbon (DOC) in the surface waters of glaciated landscapes across eastern North America and northern and central Europe. Some invoke anthropogenic forcing through mechanisms related to climate change, nitrogen deposition or changes in land use, and by implication suggest that current concentrations and fluxes are without precedent. All of these hypotheses imply that DOC levels will continue to rise, with unpredictable consequences for the global carbon cycle. Alternatively, it has been proposed that DOC concentrations are returning toward pre-industrial levels as a result of a gradual decline in the sulphate content of atmospheric deposition. Here we show, through the assessment of time series data from 522 remote lakes and streams in North America and northern Europe, that rising trends in DOC between 1990 and 2004 can be concisely explained by a simple model based solely on changes in deposition chemistry and catchment acid-sensitivity. We demonstrate that DOC concentrations have increased in proportion to the rates at which atmospherically deposited anthropogenic sulphur and sea salt have declined. We conclude that acid deposition to these ecosystems has been partially buffered by changes in organic acidity and that the rise in DOC is integral to recovery from acidification. Over recent decades, deposition-driven increases in organic matter solubility may have increased the export of DOC to the oceans, a potentially important component of regional carbon balances. The increase in DOC concentrations in these regions appears unrelated to other climatic factors.

1,622 citations

Journal ArticleDOI
TL;DR: In this paper, the authors show that positive trends in dissolved organic carbon (OC) concentrations in 474 streams, lakes, and rivers in boreal and subarctic ecosystems in Norway, Sweden, and Finland between 1990 and 2013 are surprisingly constant across climatic gradients and catchment sizes.
Abstract: Browning of surface waters because of increasing terrestrial dissolved organic carbon (OC) concentrations is a concern for drinking water providers and can impact land carbon storage. We show that positive trends in OC in 474 streams, lakes, and rivers in boreal and subarctic ecosystems in Norway, Sweden, and Finland between 1990 and 2013 are surprisingly constant across climatic gradients and catchment sizes (median, +1.4% year–1; interquartile range, +0.8–2.0% year–1), implying that water bodies across the entire landscape are browning. The largest trends (median, +1.7% year–1) were found in regions impacted by strong reductions in sulfur deposition, while subarctic regions showed the least browning (median, +0.8% year–1). In dry regions, precipitation was a strong and positive driver of OC concentrations, declining in strength moving toward high rainfall sites. We estimate that a 10% increase in precipitation will increase mobilization of OC from soils to freshwaters by at least 30%, demonstrating the ...

238 citations

Journal ArticleDOI
TL;DR: The results from the studied agricultural catchments and rivers during the period 1981–1997 suggest that weather-driven fluctuation in discharge was usually the main reason for changes in nutrient losses, and little or no impact of changes in agricultural production or management practices can be observed.
Abstract: The temporal changes and spatial variability of phosphorus andnitrogen losses and concentrations in Finland during the period1981–1997 were studied in 15 small agricultural and forestedcatchments In addition, four coastal river basins with highagricultural land use located in southern Finland were includedin the study in order to assess the representativeness ofagricultural loss estimates from small agricultural catchmentsThe mean annual loss specific for agricultural land was estimatedto be on average 110 kg km-2 a-1 for total phosphorusand 1500 kg km-2 a-1 for total nitrogen The resultsfrom small agricultural catchments were in agreement with thecorresponding loss estimates from rivers, with an average of137 kg km-2 a-1 for total phosphorus and 1800 kg km-2a-1 for total nitrogen The results from the studiedagricultural catchments and rivers during the period 1981–1997suggest that weather-driven fluctuation in discharge was usuallythe main reason for changes in nutrient losses, and little or noimpact of changes in agricultural production or managementpractises can be observed In forested areas the total phosphorusloss (average 9 kg km-2 a-1) and total nitrogen loss(average 250 kg km-2 a-1) were lower than inagricultural areas In forested catchments the impact of forestryoperations, such as clear-cutting and fertilization, and theimpact of atmospheric nitrogen deposition can be seen in changesin nutrient losses

200 citations

Journal ArticleDOI
TL;DR: There was little evidence that the long-term increasing trend in TOC concentrations was related to long- term changes in runoff, however, large seasonal and inter-annual fluctuations in runoff did appear to affect Toc concentrations for a number of years.

171 citations

Journal ArticleDOI
TL;DR: In this article, the authors analyzed trends in surface water chemistry of 173 acid-sensitive sites from 12 regions in Europe and North America and demonstrated that chemical recovery was demonstrated in the form of positive trends in pH and/or alkalinity and acid neutralizing capacity (ANC).
Abstract: Acidification of lakes and rivers is still an environmental concern despite reduced emissions of acidifying compounds. We analysed trends in surface water chemistry of 173 acid-sensitive sites from 12 regions in Europe and North America. In 11 of 12 regions, non-marine sulphate (SO4*) declined significantly between 1990 and 2008 (−15 to −59 %). In contrast, regional and temporal trends in nitrate were smaller and less uniform. In 11 of 12 regions, chemical recovery was demonstrated in the form of positive trends in pH and/or alkalinity and/or acid neutralising capacity (ANC). The positive trends in these indicators of chemical recovery were regionally and temporally less distinct than the decline in SO4* and tended to flatten after 1999. From an ecological perspective, the chemical quality of surface waters in acid-sensitive areas in these regions has clearly improved as a consequence of emission abatement strategies, paving the way for some biological recovery.

165 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The role of lakes in carbon cycling and global climate, examine the mechanisms influencing carbon pools and transformations in lakes, and discuss how the metabolism of carbon in the inland waters is likely to change in response to climate.
Abstract: We explore the role of lakes in carbon cycling and global climate, examine the mechanisms influencing carbon pools and transformations in lakes, and discuss how the metabolism of carbon in the inland waters is likely to change in response to climate. Furthermore, we project changes as global climate change in the abundance and spatial distribution of lakes in the biosphere, and we revise the estimate for the global extent of carbon transformation in inland waters. This synthesis demonstrates that the global annual emissions of carbon dioxide from inland waters to the atmosphere are similar in magnitude to the carbon dioxide uptake by the oceans and that the global burial of organic carbon in inland water sediments exceeds organic carbon sequestration on the ocean floor. The role of inland waters in global carbon cycling and climate forcing may be changed by human activities, including construction of impoundments, which accumulate large amounts of carbon in sediments and emit large amounts of methane to the atmosphere. Methane emissions are also expected from lakes on melting permafrost. The synthesis presented here indicates that (1) inland waters constitute a significant component of the global carbon cycle, (2) their contribution to this cycle has significantly changed as a result of human activities, and (3) they will continue to change in response to future climate change causing decreased as well as increased abundance of lakes as well as increases in the number of aquatic impoundments.

2,140 citations

Book ChapterDOI
01 Jan 2014
TL;DR: For base year 2010, anthropogenic activities created ~210 (190 to 230) TgN of reactive nitrogen Nr from N2 as discussed by the authors, which is at least 2 times larger than the rate of natural terrestrial creation of ~58 Tg N (50 to 100 Tg nr yr−1) (Table 6.9, Section 1a).
Abstract: For base year 2010, anthropogenic activities created ~210 (190 to 230) TgN of reactive nitrogen Nr from N2. This human-caused creation of reactive nitrogen in 2010 is at least 2 times larger than the rate of natural terrestrial creation of ~58 TgN (50 to 100 TgN yr−1) (Table 6.9, Section 1a). Note that the estimate of natural terrestrial biological fixation (58 TgN yr−1) is lower than former estimates (100 TgN yr−1, Galloway et al., 2004), but the ranges overlap, 50 to 100 TgN yr−1 vs. 90 to 120 TgN yr−1, respectively). Of this created reactive nitrogen, NOx and NH3 emissions from anthropogenic sources are about fourfold greater than natural emissions (Table 6.9, Section 1b). A greater portion of the NH3 emissions is deposited to the continents rather than to the oceans, relative to the deposition of NOy, due to the longer atmospheric residence time of the latter. These deposition estimates are lower limits, as they do not include organic nitrogen species. New model and measurement information (Kanakidou et al., 2012) suggests that incomplete inclusion of emissions and atmospheric chemistry of reduced and oxidized organic nitrogen components in current models may lead to systematic underestimates of total global reactive nitrogen deposition by up to 35% (Table 6.9, Section 1c). Discharge of reactive nitrogen to the coastal oceans is ~45 TgN yr−1 (Table 6.9, Section 1d). Denitrification converts Nr back to atmospheric N2. The current estimate for the production of atmospheric N2 is 110 TgN yr−1 (Bouwman et al., 2013).

1,967 citations

Journal ArticleDOI
22 Nov 2007-Nature
TL;DR: It is shown that rising trends in DOC between 1990 and 2004 can be concisely explained by a simple model based solely on changes in deposition chemistry and catchment acid-sensitivity, and that the rise in DOC is integral to recovery from acidification.
Abstract: Several hypotheses have been proposed to explain recent, widespread increases in concentrations of dissolved organic carbon (DOC) in the surface waters of glaciated landscapes across eastern North America and northern and central Europe. Some invoke anthropogenic forcing through mechanisms related to climate change, nitrogen deposition or changes in land use, and by implication suggest that current concentrations and fluxes are without precedent. All of these hypotheses imply that DOC levels will continue to rise, with unpredictable consequences for the global carbon cycle. Alternatively, it has been proposed that DOC concentrations are returning toward pre-industrial levels as a result of a gradual decline in the sulphate content of atmospheric deposition. Here we show, through the assessment of time series data from 522 remote lakes and streams in North America and northern Europe, that rising trends in DOC between 1990 and 2004 can be concisely explained by a simple model based solely on changes in deposition chemistry and catchment acid-sensitivity. We demonstrate that DOC concentrations have increased in proportion to the rates at which atmospherically deposited anthropogenic sulphur and sea salt have declined. We conclude that acid deposition to these ecosystems has been partially buffered by changes in organic acidity and that the rise in DOC is integral to recovery from acidification. Over recent decades, deposition-driven increases in organic matter solubility may have increased the export of DOC to the oceans, a potentially important component of regional carbon balances. The increase in DOC concentrations in these regions appears unrelated to other climatic factors.

1,622 citations

Journal ArticleDOI
TL;DR: This work has identified the key response variables within a lake that act as indicators of the effects of climate change on both the lake and the catchment, which reflect a wide range of physical, chemical, and biological responses to climate.
Abstract: While there is a general sense that lakes can act as sentinels of climate change, their efficacy has not been thoroughly analyzed. We identified the key response variables within a lake that act as indicators of the effects of climate change on both the lake and the catchment. These variables reflect a wide range of physical, chemical, and biological responses to climate. However, the efficacy of the different indicators is affected by regional response to climate change, characteristics of the catchment, and lake mixing regimes. Thus, particular indicators or combinations of indicators are more effective for different lake types and geographic regions. The extraction of climate signals can be further complicated by the influence of other environmental changes, such as eutrophication or acidification, and the equivalent reverse phenomena, in addition to other land-use influences. In many cases, however, confounding factors can be addressed through analytical tools such as detrending or filtering. Lakes are effective sentinels for climate change because they are sensitive to climate, respond rapidly to change, and integrate information about changes in the catchment.

1,353 citations

Journal ArticleDOI
05 Dec 2013-Nature
TL;DR: The sources, exchanges and fates of carbon in the coastal ocean and how anthropogenic activities have altered the carbon cycle are discussed.
Abstract: The carbon cycle of the coastal ocean is a dynamic component of the global carbon budget. But the diverse sources and sinks of carbon and their complex interactions in these waters remain poorly understood. Here we discuss the sources, exchanges and fates of carbon in the coastal ocean and how anthropogenic activities have altered the carbon cycle. Recent evidence suggests that the coastal ocean may have become a net sink for atmospheric carbon dioxide during post-industrial times. Continued human pressures in coastal zones will probably have an important impact on the future evolution of the coastal ocean's carbon budget.

1,091 citations